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Abstract—Gesture recognition is an innovative technology
which is fundamentally reshaping the way people live, entertain
and work. However, most gesture recognition systems focus on
the recognition of simple gestures and ignore the full potential
of sequential gestures involving a series of temporally-related
simple actions in order. This paper presents SGRS, a battery-
free, scalable and non-specific sequential gesture recognition
system based on COTS RFID. The key insight is that fine-
grained phase information extracted from RF signals is capable
of perceiving various gestures. In SGRS, we meticulously devise
gesture recognition mechanism by incorporating the k-means
based vector quantizer and string matching algorithm to enable
precise and real-time sequential gesture identification. Moreover,
an improved edit distance algorithm is proposed for suppressing
individual diversity. We implement SGRS and comprehensively
evaluate the performance by recognizing traffic command ges-
tures of Chinese traffic police. Experimental result shows that
SGRS achieves an average recognition accuracy of 96.2% with
eight sequential gestures and is highly robust to both individual
diversity and multipath effect.

Index Terms—gesture recognition, sequential gestures, COTS
RFID, edit distance

I. INTRODUCTION

Recently, gesture recognition has drawn increasingly signif-

icant attention in Human-Computer Interaction (HCI). Com-

pared with the traditional interaction approaches, such as key-

board and touchscreen, gesture interaction is more convenient

and natural, which has fostered a broad range of emerging

applications in gaming, health care, smart homes, etc.

While substantial progress has been achieved for gesture

recognition, most researches focus on the recognition of simple

gestures, involving a single hand action [1]–[6]. In contrast,

sequential gestures, performed by more than one part of

the body, are composed of a series of temporally-related

simple actions in order [7]–[9]. They are more sophisticated

and contain more abundant information. Therefore, sequential

gestures as a way of HCI open new possibilities for enabling a

variety of applications, such as motion gaming, sign language

recognition, VR or AR controller, and so on. Unfortunately,

only a few systems delve into this field and thereby this paper

makes an exploration on the recognition of sequential gestures.

In terms of the supporting technologies, existing gesture

recognition systems can be mainly classified into three cate-

gories. Computer-vision-based systems usually segment the
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video captured by camera into image sequences and employ

machine learning algorithms to recognize gestures [1], [4],

[7]. Although these approaches have a great advantage of high

recognition accuracy, they are sensitive to Line of Sight (LOS)

and light conditions extremely, and may raise serious privacy

concerns. Wearable-sensor-based systems utilize multiple

on-body motion sensors (accelerometer, gyroscope, etc.) to

sense the motions of hands [5], [6], [8]. Wearable sensing

methods are adept in perceiving subtle movements and thus

achieve fine-gained gesture recognition. However, users are

forced to wear varieties of heavy and expensive sensors, which

enormously limit their freedom and reduce the scalability.

Recent years have witnessed the flourishing of many inno-

vative RF-based systems, which leverage the low-level signal

characteristics, such as CSI, RSSI, phase and Doppler shift for

localization [10], [11] and activity recognition [12]. Besides,

gesture recognition systems, such as RFIPad [2], GRfid [3]

and Wisee [9], have been proposed based on the primary

underpinning that different gestures can result in distinguishing

signal fluctuations. However, due to the signal superposition,

these device-free RF-based gesture recognition systems cannot

effectively differentiate signal fluctuations caused by multiple

parts of the body, which handicaps the accurate identification

of sequential gestures. Fortunately, by attaching tags with

negligible weight on corresponding body parts, motion pattern

of each part can be captured and depicted in a fine-grained

manner, which facilitates the recognition of sophisticated

gestures notably.

Inspired by these glittering systems above, we propose

SGRS, a battery-free, scalable and non-specific Sequential

Gesture Recognition System with Commercial Off-The-Shelf

(COTS) devices. The key insight is that the reliable and fine-

grained phase information extracted from RF signals can be

regarded as an indicator to perceive these sequential gestures.

However, rigorous challenges still exist and the primary one

is how to describe these temporally-related actions of sequen-

tial gestures effectively. To combat with this puzzle, some

representative time-frequency domain features are extracted

into a feature vector, which can efficiently depict each action

from the perspective of motion states reflected by all tags.

Besides, it is especially crucial for HCI to reduce computation-

al complexity as well as enable real-time interaction. Hence,

k-means based vector quantizer is adopted to map the high-

dimensional feature vectors into a discrete subspace of lower
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stop change lane left turn pending slow down pull over go straight turn left turn right

Fig. 1. The partial actions of eight traffic command gestures. Each gesture begins with attention and goes back to attention state after execution.

dimension by encoding each vector into a code, resulting in

a low computational coded stream. Last but not least, how to

effectively deal with individual diversity is a noticeable issue

for commercial gesture recognition system. For this reason, an

improved edit distance algorithm is designed to not only spot

and identify gestures, but also increase intra-class similarity

and reduce inter-class similarity for the sake of suppressing

individual diversity. In summary, our main contributions can

be concluded as follows:

(1) To the best of our knowledge, this is the first attempt

to design a battery-free, scalable and non-specific sequential

gesture recognition system based on COTS RFID.

(2) In order to recognize sequential gestures well and truly,

we utilize the fine-grained RFID phase and propose a gesture

recognition system containing four modules: Preprocessor,

Feature Extractor, k-means based Vector Quantizer as well

as Gesture Recognizer based on the improved edit distance.

(3) We implement SGRS and choose the traffic command

gestures of Chinese traffic police as experiment subjects to

evaluate the performance. Fig. 1 shows the partial actions

of eight gestures and these gestures involve both simple

gestures and sequential gestures, which can fully evaluate the

performance of our system. The experimental result indicates

that SGRS achieves an average accuracy of 96.2% and has

strong robustness to individual diversity and multipath effect.

The rest of this paper is organized as follows. Section II

presents the theoretical basis and overview of the system.

Detailed designs of each module are described in Section III.

Section IV demonstrates the implementation and evaluation of

our system. Finally, we conclude our work in Section V.

II. SYSTEM MODEL

In this section, we present the communication model of our

passive Ultra High Frequency (UHF) RFID based system. Be-

sides, we roughly introduce the overall of SGRS architecture.

A. Communication Model

A passive UHF RFID tag interacts with a reader via

backscatter radio links and the relationship between backscat-

ter signal S(t) and phase ϕ(t) can be expressed by:

S(t) = A(t)e−jϕ(t) (1)

where A(t) is the complex valued representation of attenua-

tion. The backscatter signal S(t) is the superposition of one

direct path signal Sdir(t) that travels between an antenna and

a tag as well as reflected path signal Smul(t) including static

multipath and dynamic multipath. Therefore, S(t) can be also

represented as follows:

S(t) = Sdir(t) + Smul(t) (2)

The phase of the direct path ϕdir(t) [13] is associated with

the distance d(t) between the antenna and the tag as well as

some hardware characteristics c [14], which can be further

formulized as:

ϕdir(t) =
4π

λ
d(t) + c (3)

Combined (1-3) together, the following equation can be in-

ferred:

A(t)e−jϕ(t) = Adir(t)e
−j 4π

λ d(t)+c + Smul(t) (4)

Equation (4) indicates that the phase ϕ(t) is determined by

the distance d(t) of the direct path and the multipath part

Smul(t). Since the tag moves along with user’s body, the phase

variation is affected slightly by the multipath but dominated

by the time-varying distance between the tag and the antenna,

which makes SGRS robust enough to multipath effect.

B. System Overview

Fig. 2 demonstrates the overview framework of SGRS,

which is composed of four modules: Preprocessor, Feature

Extractor, Vector Quantizer as well as Gesture Recognizer.

In Preprocessor, a series of preprocessing measures are

performed. The raw phase profiles are unwrapped to elimi-

nate phase periodicity and then passed through the Hampel

identifier as well as the weighted moving average filter in

order to remove the outliers and smooth the signals, respec-

tively. At last, linear interpolation is adopted to obtain evenly

spaced phase samples. The Feature Extractor then divides

the phase streams into a set of sliding windows and extracts

some significant features of the time-frequency domain into

a feature vector within each window. Besides, at the training

stage, a gesture extractor is employed to segment the profiles

corresponding to the gestures before feature extraction. The

Vector Quantizer consists of two parts: a codebook builder

and a quantizing encoder. At the off-line training stage, a

codebook builder leverages k-means algorithm to cluster the

feature vectors into k clusters and build a codebook. Each

cluster represents a kind of action belonging to the sequential

gestures. During the process of on-line recognition, a quan-

tizing encoder is utilized to map each feature vector into a

code (cluster index) based on its Euclidean distance from the

cluster centroid, thus forming a coded stream. The Gesture
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Fig. 2. System architecture of Sequential Gesture Recognition System.

Recognizer uses a gesture template selector to choose a tem-

plate for each gesture and collect some statistics (e.g. trigger

thresholds) by an improved edit distance algorithm. During the

on-line identification process, the gesture recognizer calculates

the similarities between the coded stream and each template,

which generates a stream of similarity for each gesture. When

the similarity exceeds the corresponding trigger threshold, a

spotted occurrence of the particular gesture is reported.

III. SYSTEM METHODOLOGY

In this section, we show a detailed demonstration of the

methodology of SGRS and exhaustively analyze the core

techniques, based on the aforementioned four basic functional

modules shown in Fig. 2.

A. Preprocessor

Phase Unwrapping The first step to process the raw phase

profiles is unwrapping because the phase reported by the RFID

reader is a periodic function with period 2π radians [14]

(Fig. 3(a)). Hence, the approach in [15] is adopted to unwrap

the phase readings, which assumes that the absolute difference

of two adjacent phase values should be smaller than π and the

unwrapped result is shown in Fig. 3(b).

Smoothing After phase unwrapping, SGRS uses a Hampel

identifier [16] to eliminate the outliers induced by some burst

noises. Then a weighted moving average filter is employed

to further reduce the high-frequency noise. Furthermore, the

DC (Direct Current) component is removed by subtracting

the constant offset which can be calculated via a long-term

averaging over the stream.

Interpolation In RFID communications, tags reply uneven-

ly spaced in time domain due to tags collision, packet loss

and other delays, which makes it difficult for subsequent

processing, like feature extraction. Therefore, we adopt linear

interpolation with 5ms apart between consecutive values to

obtain evenly spaced phase stream.

B. Feature Extractor

Feature Extraction After preprocessing, the phase profiles

are segmented into a set of sliding windows whose length is

set to 50 with 50% overlap. A feature extractor is applied to

calculate the statistical features of the time-frequency domain

and select four features (showed in Table. I) that yield the best

performance by adopting the mRMR (minimal-redundancy-

maximal-relevance) method [17]. For the phase profiles of r
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(c) The coded stream after vector quantizer.

Fig. 3. The phase profiles and coded stream of gesture 7 (namely, turn left).

TABLE I
TIME-FREQUENCY DOMAIN FEATURES

Feature Description
Mean Average phase

Standard deviation Phase fluctuation
Peak-to-peak amplitude Magnitude of phase discretization

Standard deviation of PSD∗ Energy strength fluctuation
∗PSD (power spectral density function) can be obtained by FFT.

tags, the phase profile of each tag within each window can

be extracted with above four features, which means that the

feature vector for the j-th window can be denoted as Fj =
〈α1, α2, . . . , αm〉, where α refers to the feature and the number

of features m satisfies m = 4×r. In this manner, a sequential

gesture involving a series of simple actions can be defined as

an ordered sequence of feature vectors.

Gesture Extraction At the training stage, a gesture extrac-

tor is deployed to extract the signal fragment corresponding

to the gestures before feature extraction, such as the fragment

in the red frame of Fig. 3(b). Inspired by the Foreground

detection method widely used in image recognition field, we

design a gesture detection method to segment the off-line

phase profiles and extract gesture precisely. When the body is

in the quiescent state, the phase values are close to zero owing

to the preprocessing operation of removing DC component and
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the phase distribution is regarded as background. Those that

do not fit the background are considered as foreground and ex-

tracted. Hence, the phase fragments unrelated to the expected

gestures can avoid being processed by feature extractor, free

from taking a heavy toll on the follow-up analysis.

C. Vector Quantizer

After extracting the features into high-dimensional feature

vectors, a vector quantizer is adopted to map the feature vec-

tors into a discrete subspace of lower dimension by encoding

each one into a finite set of codes. The coded stream requires

less storage space and can be calculated quickly, which is

suitable for real-time HCI applications. This module consists

of two parts: an off-line codebook builder and an on-line

quantizing encoder.

Codebook Builder At the off-line training stage, the code-

book builder is designed to build a codebook. Given a set

of feature vectors {F1, F2, ..., Fn} as training data, where

each one is a m-dimensional vector of a sliding window,

the codebook builder leverages k-means algorithm [18] to

partition the n feature vectors into k (k ≤ n) clusters based on

the Euclidean distance. The elbow method mentioned in [19]

is adopted to select the suitable value of k by taking a measure

of appropriateness for clusters. In our experiment, the radius

of cluster is chosen as measurement criteria and the value of k
is set to 12. For a particular cluster i whose centroid vector is

represented as ci, the average distance μi from centroid vector

and standard deviation σi are calculated. Consequently, each

cluster i is represented by a set of parameters 〈i, ci, μi, σi〉,
which is considered as an item in the codebook.

Quantizing Encoder At the on-line identification stage,

the quantizing encoder is utilized to encode each feature

vector into a code (cluster index). The Euclidean distance di
between the target feature vector and each centroid vector ci
is calculated and those that satisfy the constraint condition

of di ≤ μi + 3σi make up a set S. When S is a nonempty

set, the feature vector can be encoded into the cluster index

i corresponding to the minimum value in the set S, whereas

the feature vector is encoded into the default cluster index 0.

Thus, vector quantizer converts the stream of feature vector

into the coded stream which is shown in Fig. 3(c).

D. Gesture Recognizer

Improved Edit Distance Edit distance algorithm [20]

calculates the distance between two strings in terms of the

minimum number of edit operations needed for transforming

one to another. There are three edit operations: insertion,

deletion and substitution. Suppose that D(i, j) represents the

minimum edit operation cost needed to transform the first i
symbols of string S1 into the first j symbols of string S2,

namely S1(1...i) → S2(1...j). D(i, j) can be computed by

dynamic programming principle, which is formulized as (5).

D(i, j) = min[D(i−1, j)+p,D(i, j−1)+q,D(i−1, j−1)+r]
(5)

where p, q, r represent the cost of insertion, deletion and

substitution respectively. p and q are set to 1. r is set to 0,

when S1(i) = S2(j), while set to 1, when S1(i) �= S2(j).
Therefore, the edit distance between S1 and S2 can be obtained

by D(m,n), where m, n denote the length of S1 and S2.

We observe that different gestures have distinct coded

strings. However, owing to the individual diversity, the same

gesture has highly similar but not identical coded strings,

which can be visually described by the following instance.

G11 = {1, 1, 1, 1, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1}
G12 = {1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 1, 1, 1}
G21 = {1, 1, 1, 1, 5, 5, 5, 5, 4, 4, 4, 4, 1, 1, 1, 1}

where G11 and G12 are two strings belonging to gesture 1

while G21 is the string of gesture 2.

With the purpose of overcoming the problem mentioned

above, we elaborately design an improved edit distance algo-

rithm to further increase intra-class similarity and reduce inter-

class similarity. Firstly, the cost of edit operations is reduced to

e(e < 1) when the current symbol is the same as the previous

one, which can narrow the gap incurred by the variety of

action duration and suppress individual diversity effectively.

And then, the similarity between S1 and S2 is defined as:

T (S1, S2) = 1− D(m,n) + C(m,n)

max(m,n)
(6)

where C(m,n) stands for the additional cost of the unexpected

symbols and is represented as:

C(m,n) = m−
m∑
i=1

1S2(S1(i)) + n−
n∑

j=1

1S1(S2(j)) (7)

where 1A(x) is an indicator function, which is presented by:

1A(x) :=

{
1 x ∈ A
0 x /∈ A

(8)

In this way, the similarity between G11 and G12 is increased

from 0.85 to 0.91, while the similarity between G11 and G21

is reduced from 0.62 to 0.12, which suppresses individual

diversity effectively.

Gesture Template Selector Gesture template selector is

designed to choose a template for each sequential gesture and

generate the corresponding trigger threshold. The similarity

T (Sp, Sq) between any two strings Sp and Sq is calculated by

the improved edit distance. For a specific gesture g, the string

that maximizes intra-class similarity (the sum of similarities to

all other candidates of the same gesture g) and minimizes inter-

class similarity (the sum of similarities to all strings of other

gestures) is selected as the template. Besides, the matching

similarities between the selected template and all candidates

of the gesture g are calculated. The mean μg and standard

deviation σg of these matching similarities are computed and

a gesture-related trigger threshold kg is derived by following

formula:

kg = μg − 3σg (9)

Gesture Spotting and Recognition After receiving a new

code from vector quantizer, the similarity between each tem-

plate Si and the coded stream is computed according to the

improved edit distance, giving rise to a stream of matching
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Fig. 4. Gesture spotting and recognition in the similarity stream.

similarity for each gesture. Each similarity value is decided by

the highest similarity between Si and the substring of coded

stream whose length ranges from li/2 to 2li, where li is the

length of Si. When the similarity exceeds the corresponding

trigger threshold ki, a spotted occurrence of the particular

gesture i is reported. Fig. 4 visually shows the process of

spotting gesture 2 (namely, change lane).

However, since the spotting process is carried out in parallel

for all gestures, temporal collisions between spotted gestures

occur occasionally. It is worth noting that using absolute index,

like similarity si, as judge standard for resolving conflict may

lead to misdiagnosis. That is because the lengths of templates

differ a lot due to variant complexity of sequential gestures. As

a consequence, we choose the confidence level cli of colliding

spotted gestures as judge standard, which is defined as follows.

cli =
si
ki

(10)

The gesture with the highest confidence level is treated as

the identification result. Compared with the judge standard of

similarity si, the precision rate of conflict resolution raises

from 88.2% to 95.5%, which confirms its effectiveness.

The time complexity of the gesture recognition process is

O(km2n) which seems high, but the lengths of both templates

and coded streams are quite short thanks to the well-designed

vector quantizer (e.g. the longest template only contains about

40 symbols). We evaluate the run time on a laptop equipped

with an Intel Core i5 CPU running at 2.8GHz and the result

shows that the average time required to process 125ms of data

is about 8ms, which means that the laptop can easily handle

real-time gesture recognition.

IV. PERFORMANCE EVALUATION

In this section, we first describe the implementation of

SGRS and then thoroughly evaluate the performance of SGRS

from the perspective of recognition accuracy, the effect of

suppressing individual diversity, resisting multipath as well as

diverse positions.

A. Implementation

We implement SGRS using COTS RFID devices without

any hardware modification. As shown in Fig. 5, a directional

antenna (Laird S9028PCR with 9dBi gain) is fixed at the

2.2m

Tags

Antenna

Fig. 5. Experimental implementation.

ceiling of a room (2.2m high), connected with an ImpinJ R420

reader operating at a fixed frequency of 920.675MHz. The type

of RFID tags is AZ-9640 with a size of 98mm × 12mm.

B. Recognition Accuracy Analysis

In order to explore the overall performance of SGRS for

sequential gestures, 5 volunteers are invited to perform each

of 8 traffic command gestures shown in Fig. 1 for 100 times.

And then we perform 10-fold cross-validation on the phase

profile dataset and obtain an average confusion matrix shown

in Fig. 6. The average recognition accuracy is 96.2%, which

indicates that SGRS not only can identify more sophisticated

sequential gestures, but also achieves competitive accuracy

compared with Wisee [9] (94%) and GRfid [3] (96.5%). Due to

the packet loss incurred by large-scale action, the recognition

precision of gesture 6 (namely, go straight) decreases to

89.2%, which can be improved by using higher-performance

RFID antenna and tag. According to the confusion matrix, the

average precision, recall and F1-scores are 0.98, 0.96 and 0.97

respectively, which illustrates its superior performance.

C. Effect of Suppressing Individual Diversity

In order to explore the robustness of SGRS against individu-

al diversity, 15 volunteers are asked to perform each gesture for

50 times. These volunteers are 9 male and 6 female university

students with the age ranging from 21 to 28. We collect the

phase profiles from one of those volunteers as the training

set to build the codebook and select templates, and then

perform two sets of experiments. The per-participant validation

uses the phase profiles of the same volunteer as the test set

while the cross-participant validation uses the phase profiles

of other volunteers. Fig. 7 depicts the performance impact of

individual diversity and the error bar specifies the maximum,

minimum and average accuracy under different volunteers.

We can conclude that the cross-participant validation can still

reach a high average accuracy of 94.6%, only a slight drop

compared to the per-participant validation (96.8%), which

verifies the effectiveness of suppressing individual diversity.

D. Effect of Resisting Multipath

One of the main drawbacks of RF-based systems, such as

GRfid [3] and Wisee [9], is susceptible to multipath effect,
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which may easily incur instability in practice. By contrast,

SGRS is insensitive to ever-changing surroundings, which has

been briefly touched upon in section II. In order to visualize

the capability of resisting multipath, we perform two kinds

of experiments and collect each gesture for 50 times. In the

static multipath scenario, a volunteer is performing gestures

and a metallic board is laid aside. In the dynamic multipath

scenario, two to five volunteers are asked to walk around

when a volunteer is performing gestures. Experimental results

shown in Fig. 8 illustrate that the average accuracies in static

multipath (95.8%) and dynamic multipath scenarios (93.5%)

do not have obvious degradation, which demonstrates the

stability and feasibility in daily life.

E. Effect of Diverse Positions

In order to evaluate the effect of diverse positions, we

take data collected right under the antenna (recorded as U)

as training set and data of other positions for testing. We

collect each gesture for 50 times in four different positions,

namely, left of U (LU), right of U (RU), front of U (FU)

and back of U (BU) whose distances from U are about 20cm

to 50cm. Fig. 9 shows the average accuracy of recognizing

gestures over different positions. Compared with the baseline

U, SGRS achieves analogous performance in position LU,

RU and BU, especially the position BU. However, due to

the disturbance of the human body, the average accuracy

in position FU degrades to 86.8%. It is noteworthy that we

can expand the scope of identification by using multifarious

improvement measures, such as enhancing transmitting power,

deploying multi-antenna and so on.

V. CONCLUSION

In this paper, we propose SGRS, a sequential gesture recog-

nition system based on COTS RFID. The distinctive phase

fluctuations related to specific gesture patterns are regarded as

a particular indicator to recognize sequential gestures. SGRS

consists of four functional components, including Preproces-

sor, Feature Extractor, k-means based Vector Quantizer as well

as Gesture Recognizer based on the improved edit distance.

We choose eight traffic command gestures as experiment

subjects to evaluate the performance comprehensively and the

experimental results demonstrate that SGRS can achieve an

average recognition accuracy of 96.2%. Meanwhile, SGRS

shows strong robustness to individual diversity and multipath

effect, which validates its robustness and feasibility.
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