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ABSTRACT

Innovative Human Machine Interface technologies are fundamen-
tally reshaping the way people live, entertain and work. Passive
RFID tags, benefiting from its wireless, inexpensive and battery-free
sensing ability, are gradually being applied in new-style interaction
interfaces, ranging from virtual touch screen to 3D mouse. This
paper presents TagController, a universal wireless and battery-free
remote controller with two types of interactive actions. The key
insight is that the fine-grained phase information extracted from
RF signals is capable of perceiving various actions. TagController
can recognize 10 actions without any training or prestored profiles
by executing a sequence of functional components, i.e. preproces-
sor, action detector and action recognizer. We have implemented
TagController with COTS RFID devices and conducted substan-
tial experiments in different scenarios. The results demonstrate
that TagController can achieve an average recognition accuracy of
95.8% and 94.3% in the scenarios of one and two remote controllers,
respectively, which promises its feasibility and robustness.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools;
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1 INTRODUCTION

Incessant innovations in areas, such as wireless sensing, gesture
recognition and wearable devices, are incorporating with even
newer technologies like machine learning to open up endless pos-
sibilities for novel interaction interfaces.

Existing unconventional interaction interfaces can be mainly
classified into three categories according to their supporting tech-
nologies: Computer vision based interfaces, such as Kinect [18], Re-
alSense [10], Leap Motion [11], are fused with multifarious sensing
technologies to achieve human-computer interaction. Although
these interfaces can create amazing user experiences, they have a
strong dependence on light and may raise serious privacy concerns;
Sensor based interfaces leverage integrated sensors embedded in
smart phones (e.g. accelerometer and gyroscope [3], magnetome-
ter [1] and microphone [17]) or dedicated sensors (e.g. SmartSkin
sensor [21]) deployed in environments to interact with humans.
These interfaces are either energy-consuming or labor-intensive;
Wi-Fi based interfaces offer opportunities for new-fashioned interac-
tion modes, e.g. preforming device-free gesture control [2], playing
a contactless exergame [20] and striking a printed keyboard [5].
These interfaces are quite intriguing and encouraging, but they
are susceptible to environments and thus have some restrictions in
practical use.

Passive Radio Frequency Identification (RFID) tags, benefiting
from its wireless, inexpensive and battery-free sensing ability, are
gradually being applied in new-style interaction interfaces, such
as 3D mouse [15], virtual touch screen [23, 26], interactive light
controller [12], etc. Inspired by these glittering interfaces, we devise
TagController, the first universal wireless and battery-free remote
controller for handling ubiquitous human to machine interactions
via COTS RFID devices. As is known to all, remote controllers have
permeated almost every facet of our lives, including operating tele-
vision, controlling slideshow, playing video games, etc. Our vision
is that TagController can provide several attractive advantages over
traditional remote controllers: 1) Battery-free and Inexpensive:
Passive RFID tags are equipped without any batteries, which ap-
parently eliminates the trouble for replacing batteries as well as
protects the environment. Furthermore, there is no need to do any
hardware modifications with COTS RFID readers and antennas. !
Thus, the total cost for one remote controller is less than a half US
dollar (4 tags with 5-10 cents each [28]), which makes it possible

!As assumed in GRfid [30] and Tagball [15], RFID readers are deployed as basic
equipments in indoor environment.
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for fabricating one remote controller for each machine; 2) Easy-to-
find and Easy-to-make: It always happens that people restlessly
look for the remote controller while it is not in the room at all. Tag-
Controller is able to assist people in judging whether the remote
controller is nearby rapidly. Even though the remote controller is
missing, it is rather simple and economic to refabricate a new one
(just attaching 4 tags on a cardboard); 3) Light-insensitive and
Multidevice-supported: TagController inherits a preponderance
of being insensitive to light from RF based systems, i.e. it can be
utilized in a relative gloomy environment. Moreover, since actions
performed by users via the self-made remote controller are carefully
designed according to factors that dominate phase changes, it is
much more tolerant of ever-changing surroundings than device-
free interaction interfaces, and thereby multiple remote controllers
can work simultaneously.

The key insight of TagController is that the reliable and fine-
grained phase information extracted from RF signals is capable
of perceiving various actions when users operate the battery-free
remote controller. More specifically, each action can induce dis-
tinctive phase fluctuations, which can be regarded as a particular
indicator for further recognition. Although the rationale behind
sounds fairly intuitive, there are still some rigorous challenges
needed to be addressed:

(1) How to recognize actions without any training or prestored
profiles? There is no doubt that it is onerous to construct suitable
phase profiles and also time-consuming to match real-time phase
extraction with phase profiles, indicating that phase profiles are
infeasible for real-time action recognition in TagController.

As shown in Figure 1, we address this problem by meticulously
excogitating 10 interactive actions, including 4 press actions and 6
motions, on the basis of deliberating over the factors that dominate
phase changes (§2.1). Unfortunately, these ten actions cannot be
distinguished from each other with phase information from one
tag, thus we propose action-specific features by integrating phase
changes of four tags to exclusively discern different actions (§3.3).

(2) How to exclude the influence of disparate phase patterns en-
gendered by individual diversity? Our extensive experiments have
manifested that users with various habits, such as the duration of
one action and movement range, can give rise to totally different
phase patterns when they perform the same action. Actually, even
if a user performs the same action several times, it is difficult to
guarantee that the phase patterns are identical.

After doing substantial analysis of the experiments, we present
square-array tag placement for the sake of generating distinct phase
profiles for each action (§2.2). Most importantly, action-specific fea-
tures constructed based on this special tag placement are completely
immune from the problem mentioned above (§3.3).

(3) How to make sure that actions can be recognized fast and pre-
cisely? As an instant interaction interface, it is of great importance
for TagController to provide real-time and precise feedbacks.

We implement TagController as a pipeline containing three com-
ponents: preprocessor (§3.1), FSM based action detector (§3.2) and
action recognizer (§3.3). In preprocessor, processed tag readings are
compressed frame by frame to reduce computational overhead. In
action detector, the frame Mean Absolute Deviation (MAD) fed by
preprocessor can be regarded as an instant input for a simple Finite
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State Machine which can detect an action almost in real-time. In
action recognizer, benefiting from action-specific features, actions
can be precisely recognized without matching prestored profiles,
which definitely speeds up the process of recognition.

In summary, our main contributions can be concluded as follows:

e To the best of our knowledge, TagController is the first
universal wireless and battery-free remote controller for
handling ubiquitous human-to-machine interactions. This
system possesses multitudinous target applications and
has revealed its tempting superiority, such as being easy
to find and make, supporting multidevice.

o We sufficiently investigate factors that dominate phase
changes and accordingly devise a series of actions which
can be recognized without phase profiles. In addition, we
propose action-specific features extracted from all the tags
on the remote controller to uniquely discriminate actions
with the help of special square-array tag placement.

o We implement TagController with COTS RFID devices and
self-made remote controllers. Experimental results show
that TagController can achieve an average recognition
accuracy of 95.8% and 94.3% in the scenarios of one and
two remote controllers, respectively.

The rest of this paper is organized as follows. Section 2 presents
the overview of the system. Detailed designs of each processing
module are described in Section 3. Section 4 and Section 5 demon-
strate the implementation and evaluation of our system respectively.
Section 6 reviews the related work our system draws on. Finally,
we conclude our work in Section 7.

2 SYSTEM OVERVIEW

In this section, we first present the communication model of our
passive Ultra High Frequency (UHF) RFID based system and elabo-
rate on the design of non-training actions. Next, we perform two
sets of preliminary experiments using a COTS Impin] reader and
several commercial tags to expound the reason why we should
bring in the group sensing technique. Finally, we roughly introduce
the overall work-flow of our system.

2.1 Communication Model and Action Design

A passive UHF RFID tag interacts with a reader via backscatter
radio links. The tag with no battery equipped, rectifies the received
power emitted by the reader to support operation of its circuitry,
and modulates the transmitted signal from the reader in order
to send information back [7]. There are two magic weapons for
present COTS UHF readers to be qualified for ubiquitous computing:
1) Long-range read and write: they can interrogate tags within a
few dozen meters; 2) Detailed low level data: they have the ability
to proffer ample low level user data including RF phase, RSSI and
Doppler shifts [9]. In our system, the reliable and fine-grained phase
information is employed as the only perceptive indicator in virtue
of its sensitivity to movement and multipath [19].

The integrated signal S(t) received by the reader can be repre-
sented by the following equation:

S(t) = A(t)e 7™ (1)
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Figure 1: Communication model and Actions. There are 10 actions in total, including 4 presses corresponding to the number
of tags (shown in left) and 6 motions corresponding to three dimensions (shown in right). Each action consists of two steps:
1) Presses: put the finger on the tag and then pull the finger up; 2) Motions: perform the step displayed by the black solid line

and then perform the step by the red dotted line.

where A(t) is the complex valued representation of attenuation and
the initial phase offset and ¢(t) denotes the time-varying phase
offset.

As shown in Figure 1(a), the integrated signal S(t) is comprised of
the ones that travel along the direct path between the antenna and
the tag, and those that are reflected, i.e. multipath. The multipath
can be divided into two parts: the ones reflected by the ubiquitous
and static reflectors like floors and walls (static multipath) and those
reflected by moving objects like hand and body (dynamic multi-
path). Therefore, the integrated signal S(¢) can also be expressed
as follows:

S(t) = Sgir(£) + Ssta(t) + Sayn () )
where Sgir (£), Ssta () and Sgyy (¢) stand for the signal of direct path,
the signals reflected by static reflectors and dynamic ones respec-
tively.

The phase rotation of the direct path ¢g;,(t) is associated with
the distance between the reader and the tag d(t) as well as some
hardware characteristics ¢ [9], which can be further denoted as

pan(t) = (1) + ¢ ©

When putting all the three equation above together, the following
equation can be inferred:

Andt
7 (t)+c

A)e W = Agi(t)e +Sta(t) + Sagn(t) ()

where Ag;,(t) denotes the complex valued representation of atten-
uation in the direct path.

Enlightened by Equation 4, we ingeniously devise two types
of non-training actions whose phase-changing patterns can be
easily identified: 1) Press: When a finger approaches a tag and
then moves away from it as shown in Figure 1(a), the phase of this
pressed tag changes observably as shown in Figure 2(b), which is
primarily caused by the variation of Sgyy (¢). It is noteworthy that
there is missing tag read during the period of pressing, which will
be explained in §3.1. 2) Motion: When a user performs any action

depicted in Figure 1(b), the phases of all tags change regularly along
with the time-varying distance d(t) as shown in Figure 2(b).

These actions provide two prominent benefits: On one hand,
they can raise the ability of being insensitive to ever-changing
surroundings, which is accomplished by directly manipulating tags;
On the other hand, phase patterns of each action are distinct enough
to be separated without training any phase profiles.

2.2 Preliminary Experiments

In order to decipher the reason why we should introduce the group
sensing technique, we conduct two sets of preliminary experiments
using COTS RFID devices. These two experimental settings are as
follows: As shown in Figure 2(a), a self-made remote controller are
attached with 4 tags and an antenna connected to an Impin]J reader
is fixed above the remote controller with a distance of 1.5m.

Observation 1. It is insufficient to recognize 10 actions merely
leveraging the phase information from one tag.

We ask a volunteer to perform 10 exemplary actions one by one,
including 4 presses and 6 motions. As shown in Figure 2(a), phase
changes of one tag engendered by these actions are quite clear and
obvious. However, these actions cannot be distinguished from each
other on account of their non-unique phase patterns. In order to
solve this problem, we arrange four tags at the vertex of a square for
the sake of generating distinct phase patterns for each action when
taking phase changes of all tags into consideration as depicted in
Figure 2(b).

Observation 2. One action performed by various users may be
totally different due to their personal habits like range of movement
and rotation axis. Actually, it is hard to guarantee that phase patterns
are identical even when a user repeatedly perform the same action.

Five volunteers are invited to perform each of ten actions twice
in turn. Three representative phase profiles of action ‘Left’ are
selected to illustrate the observation mentioned above. Except that
in rightmost figure, the remaining phase profiles in Figure 3 are
produced by the same user. In order to solve this problem, we design
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Figure 2: The phase profiles of four tags are collected after a
user performs ten actions.

the group sensing technique by leveraging several action-specific
features to exclude disparate phase patters of the same action (§3.3).

2.3 System Flow

Figure 4 demonstrates the overall framework of TagController,
containing three parts, i.e. hardware components, softwares and
user-defined applications.

Hardware: Almost all the hardwares adopted in TagController
(e.g. multiple tags, a RFID reader, an antenna and one PC) are off-
the-shelf except for the self-made remote controller. As depicted in
Figure 4, it is effortless to fabricate a battery-free remote controller,
just attached with four square-array tags on the cardboard.

Software: Upon receiving data packets from the reader, the PC
feeds them into three data processors in sequence, that is, preproces-
sor, action detector and action recognizer. The preprocessor unwraps
the raw phase readings, fills the missing ones and most importantly
compresses the processed phase readings frame by frame. Next, the
action detector monitors the potential actions by executing a Finite
State Machine using a special indicator from the preprocessor. Then
it checks the validity of possible actions and passes compressed
action profiles to the next component if actions are valid. Finally,
the action recognizer extracts action-specific features from action
profiles and then classifies the corresponding action by performing
a simple action recognition algorithm.

User-defined applications: In order to demonstrate the fea-
sibility and availability of TagController, we developed a simple
application which can display real-time actions on the screen. It is
indisputable that developers can rapidly build self-defined applica-
tions based on TagController.
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Figure 3: Left action: The first two phase profiles comes from
the same user while the remaining one from the other.

3 METHODOLOGY

This section details the design of TagController, including prob-
lems arising when we try to design each component, key obser-
vations obtained by exhaustively analyzing these problems and
core techniques elaborately designed according to corresponding
observations.

3.1 Preprocessor

The preprocessor is an indispensable component in our system for
the inherent slight imperfections of RFID systems: 1) Raw phase
readings is likely to be wrapped due to the hardware characteristics
of commercial readers; 2) There are two kinds of cases where phase
readings will be missing for some time; 3) The millisecond-level
interrogation between two tag reads specified by the C1G2 protocol
[8] makes it hard to meet the requirements of real-time operation if
each module processes the data one by one. All of these three foibles
will make the system fail to work practically. Therefore, we remedy
the limitations by orderly executing three modules, including phase
unwrapping, phase filling as well as frame compression.

Phase unwrapping: As shown in Figure 2(a), the phase read-
ings returned by Impin] readers is a periodic function with period
2z radians [9], which is definitely inconvenient for subsequent
analysis. Thus, the first priority of preprocessor is to unwrap the
raw phase readings. As assumed in TagBooth [16], the absolute
difference of two adjacent reading phase value should be smaller
than 7 because of the low frequency of hand movement compared
with the reader interrogation. For simplicity, we adopt the approach
in TagBooth [16] to solve this problem.

Phase filling: As we can observe from Figure 2(a), there are two
missing tag reads in the process of performing ten actions, which
exactly correspond to two different cases. The first case always
happens when dielectric material like fingers comes very close to a
tag [25]. And the second case is incurred by the blind direction of
an RFID tag which is related with its non-isotropic radiation [27].

In order to successfully recognize actions, intact phase readings
must be provided to the subsequent module namely frame compres-
sion, which can be achieved by interpolating phase values among
missing readings. Unfortunately, although there exists some ev-
idence implying missing readings, common reader interfaces do
not expose this information [25]. Hence, we attempt to acquire the
maximum interval between two tag reads through experiments,
which can help us identify missing readings. Extensive experiments
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Figure 5: Factors affecting the interval between two reads.

have been conducted with the number of tags ranging from 1 to 40,
various dynamic multipath brought by humans as well as hands,
and the distance between tags and the antenna ranging from 0 to
1m. The experimental results shown in Figure 5 can be summa-
rized as follows: 1) Compared with Figure 5(a) and Figure 5(b), we
can draw a conclusion that the interval between two tag reads is
almost impervious to dynamic multipath as well as the distance
between tags and the antenna; 2) As we can obtain from Figure
5(b), although the maximum interval between two tag reads are
positively associated with the number of tags in the interrogation
zone, the relationship between them is rather stable, indicating
that developers can prestore a key-value table which records the
corresponding relationship.

Each time when a phase reading arrives, the phase filling mod-
ule checks the interval between the current phase readings and
the previous one. If the interval exceeds the maximum interval
ascertaining by looking up the prestored table, a fast, efficient and
stable interpolation approach called cubic spline interpolation [4]
is executed by the current phase reading along with two preceding
readings.

Frame Compression: The frame compression module is intro-
duced to serve two significant purposes. Reducing computational
overhead: The C1G2 protocol implemented by readers is capable of
performing millisecond-level interrogations, suggesting that it is
hard to process the phase readings one by one in each processing
module. Therefore, phase readings are compressed frame by frame
to meet the requirements of real-time operation as shown in Figure
6. In fact, the simple rationale behind is that the mean of phase
values substitutes for all the phase values in a frame, which can not

only reduce the computational cost, but also smooth the phase val-
ues. Providing action detector with the vital indicator: We can draw a
conclusion from the basic observation that the extent of variations
during actions is much more severe than that of “non-action” peri-
ods. Therefore, this module calculates the mean absolute deviation
(MAD) of phase values for each frame and regards it as a vital in-
dicator for action. For the convenience of subsequent processing,
we convert the MAD of each frame into a binary value by defin-
ing a threshold mad_thresh. This threshold can be determined by
preliminary measurements, which is empirically set to 0.05 in our
implementation. If the MAD of frame i is greater than mad_thresh,
this module replaces the original MAD with 1 and 0 otherwise.
Mathematically, this process can be denoted as

©)

1, rame_mad; > mad_thresh
frame_mad; = { f - -

0, otherwise

where frame_mad; represents the MAD of its corresponding frame
i. It is worth noting that the frame size is a critical parameter affect-
ing the performance of our system, so we test various frame sizes
and empirically set it as 100ms which optimizes the performance.
Figure 6 shows the result of performing frame compression, which
verifies its effectiveness.

3.2 Action Detector

After preprocessing the raw phase readings, the action detector is
applied to probe potential actions. It is fairly essential yet challeng-
ing when taking the accuracy and instantaneity into account. As
a matter of fact, there are many proven segmentation techniques
such as KL divergence [6], foreground detection [24], Modified
Varri Method [30] and so on. In this paper, we devise a FSM based
action detection algorithm exploiting the distinction of signal fea-
tures. Furthermore, to increase the reliability of our algorithm, we
make a second examination by verifying the validity of possible
actions.

FSM based action detection: Owing to the discrepancy of
movement between tags when performing actions, their MADs
for the same frame may be divergent, thus we perform a logical
or of all the MADs in the same frame as shown in Figure 6. How-
ever, there are still two problems needed to be addressed albeit
the resulting MAD reveals itself as a useful indicator for actions.
On one hand, some false positive outliers may appear when users
casually shake their hands or bodies, which must be filtered before
being leveraged; On the other hand, the peculiar moving patterns
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tation results when performing two actions.

Algorithm 1 Algorithm for filtering and rectifying false MADs

Input: Three adjacent frame MADs frame_mad;_1, frame_mad;
and frame_mad;1
Output: The processed frame MAD frame_mad;
1: frame_mad_sum = frame_mad;_1 + frame_mad;1
2: if frame_mad; == 1 then
3. // Filtering false positive MADs
4 if frame_mad_sum == 0 then
5 frame_mad; =0
6 endif
7. else
8:  // Rectifying false negative MADs
9 if frame_mad_sum == 2 then

10: frame_mad; = 1
11:  endif
12: end if

of actions give rise to some false negative MADs, which may take
place in the middle of actions and should be undoubtedly rectified
to insure that actions are segmented as a whole. After filtering or
rectifying a faulty MADs, we send this cleaned MAD to a simple
Finite State Machine for action detection.

Logical or operation: Once MADs from all tags in the same frame
have been collected, the action detector calculates the result of the
logical or operation and delivers it to the next module.

Filtering and Rectifying: In order to avoid detecting false actions
or splitting an unbroken action into two parts, the action detector
filters the false positive MAD and rectifies the false negative MAD
through the approach described in Algorithm 1.

Finite State Machine: After collecting the cleaned MAD, a simple
Finite State Machine is utilized to detect an action. As shown in
Figure 7, when the FSM is in the static state denoted as I, if the
cleaned MAD equals to one, the FSM informs the validity checking
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module to store the mean of the current frame; otherwise, the
validity checking module should discard it. When the FSM is in the
kinetic state denoted as II, if the cleaned MAD is equivalent to zero,
the validity checking module will receive an action-detected signal;
otherwise, it keeps storing the current value.

Validity Checking: Although most of outliers have been elimi-
nated by the filtering operation, there are a few cases where users
persistently shaking their bodies, which cannot be effectively han-
dled. Thus, the action detector excludes false actions by examining
the range and duration of the possible action. Finally, if this possible
action passes the examination, extracted phase profiles of the action
will be sent to the action recognizer. It is necessary to account for
the structure of action profiles, which is a n X m matrix consisting
of frame MEANS for n tags during this action. Each row of this
matrix contains m frame MEANSs for a specific tag.

3.3 Action Recognizer

As the core component for TagController, the action recognizer
fulfills two essential functions by devising several action-specific
features, including eliminating the discrepancy of phase patterns
engendered by individual diversity and recognizing all the defined
actions without any training or prestored profiles.

Feature extraction: Different from common activity recogni-
tion systems which need either to train the model [29] or to prestore
the signal profiles [22], we come up with an audacious idea for Tag-
Controller: Why not design a system with no need for extensive
preliminary work? Fortunately, benefiting from meticulous designs
of actions and tag placement, there are indeed some action-specific
features which exclusively belong to the corresponding actions. The
key insight behind is that TagController maximizes the characteris-
tic difference of actions through treating four tags on the cardboard
as a whole instead of extracting their features independently.

For the convenience of calculating the action-specific features,
the Direct Current (DC) component of each tag in action profiles
should be removed by subtracting the first value of each row from
all the frame MEANS in this row respectively.

Feature 1 - Peak-to-Peak Amplitude (P2PA): As shown in Fig-
ure 2(b), the peak-to-peak amplitude of each tag in action profiles
computed by Equation 6 is an important indicator for precise recog-
nition.

P2PA = max(frame_mean) — min(frame_mean) (6)
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where frame_mean represents frame MEANS for each tag corre-
sponding to each row in action profiles which has been particularly
explained in section 3.2. max() and min() calculate the maximum
and the minimum of frame_mean respectively.

Feature 2 - P2PA Divergence (PD): Thanks to the ingenious
tag placement and well-designed actions, the values of P2PA for all
tags in a specific action comply with a distinct and certain phase
pattern. More specifically, in a press action, it is quite intuitive that
the value of P2PA for the pressed tag must be far larger than the rest
of tags whose values of P2PA are extremely small; in other actions,
there is no such large division among the values of P2PA because
at least two tags are behaving in the same way. Therefore, the press
action can be differentiated from other actions by calculating the
value of PD as follows:

max(P2PAs)
PD = 7
Z P2PAs; @)

where P2PAs denotes a set of P2PA values. Accordingly, P2PAs; is
the value of P2PA for tag i and n represents the number of tags on
the remote controller. It is straightforward to determine the pressed
tag immediately after detecting a press action.

Feature 3 - P2PA Product (PP): We can image that both of the
up action and the down action can evoke larger phase fluctuations
than other motions, namely ‘Left’, ‘Right’, ‘Forward’ and ‘Backward’.
Moreover, all the tags of these two actions behave in almost the
same way, and thereby the product of all the elements in P2PAs
will be much greater than others.

n
PP = 1_[ P2PAs; ®)

i=1
Feature 4 - Frame Mean Magnitude (FMM): The magnitude
of frame_mean for each tag defined in Equation 9 is very useful
to distinguish the up action and the down action. After calculating
each row of FMM in actions profiles, we store them in a set called

FMMs.

FMM = sum(frame_mean) )

where sum() computes the sum of elements in frame_mean.

Feature 5 - FMM Difference (FMMD): We leverage the remote
controller depicted in Figure 1(a) to clearly explain how tag place-
ment is used to devise the most artful feature. FMMD contains the
FFM difference for combinations of tag 1 and tag 3, tag 2 and tag
4,1 and tag 2 as well as 3 and tag 4 in sequence. When a left or
right action is performed, one of the first two elements in FMMD,
namely FMMD; or FMMD; must be the smallest one in FMMD
on account of nearly identical behaviors for each combination of
tags. Likewise, when a forward or backward action is performed,
one of the last two elements in FMMD must be the smallest one.

Another trick point is that, although action profiles of ‘Left’,
‘Right’, ‘Forward’ and ‘Backward’ may be completely different due
to the various rotation axis, FMMD3 or FMMD,4 must be greater
than 0 for ‘Left’ and be smaller than 0 for ‘Right’ which can be
verified in Figure 3. Similarly, ‘Forward’ corresponds to FMMD;
or FMMD greater than 0 and ‘Backward’ otherwise.

Action recognition: As described in Algorithm 2, the process
of recognizing actions based on action-specific features is quite
simple due to the distinct feature of each action. It is noteworthy to
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Algorithm 2 Algorithm for action recognition

Input: action profiles, pd_thresh, pp_thresh
Output: type of the inputting action
1: Removing the DC component of each row in action profiles
2: P2PAs « calculate P2PA for each row in action profiles
3: Calculate PD of P2PAs
4: if PD > pd_thresh then
5. Calculate the maximum of P2PAs

6:  Return ‘Press’ and the corrpesonding id of the maximum
7. else
8:  Calculate PP of P2PAs
9:  FMMs « calculate FMM for each row in action profiles
10:  if PP > pp_thresh then
11: // FMMs; can be any one of elements in FMMs
12: if FMMs; < 0 then
13: Return ‘Up’
14: else
15: Return ‘Down’
16: end if
17:  else
18: min_index « the index of the minimum of FMMD
19: if min_index equals to 1 or 2 then
20: if FMMDs3 > 0 then
21: Return ‘Left’
22: else
23: Return ‘Right’
24: end if
25: else
26: if FMMD; > 0 then
27: Return ‘Forward’
28: else
29: Return ‘Backward’
30: end if
31: end if
322 endif
33: end if

emphasize that none of these features needs to be compared with
a threshold except for PD and PP. Fortunately, PD and PP are so
well-designed that the thresholds of these two features can be easily
determined by a few experiments as we will discuss in section 5.1.

4 SYSTEM IMPLEMENTATION

This section presents the detailed information of the hardware and
software implementation.

Hardware We build TagController on some commercial off-the-
shelf RFID devices and a self-made remote controller which can be
fabricated without any effort. As shown in Figure 1(a), a directional
antenna (Laird S9028PCR with 9 dBi gain) is fixed at the ceiling
of a room, connected with an ImpinJ R420 reader. The reader is
implemented on the basis of C1G2 [8], and can be configured with
several parameters. For the sake of maximizing the performance of
TagController, the reader is set to work with the highest data rate
mode called "Max Throughput" as well as the maximum transmit
power 32.5 dBm. The remote controller is made by attaching four
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Figure 8: An example of PD and PP for 10 actions.

Alien Az-9629 UHF RFID Tags with a size of 25.5mm X 25.5mm on
a common cardboard in the shape of square.

Software In order to instantly display the outcome of our de-
sign as well as perform sufficient analysis, we develop two sets
of systems. One of them is implemented in C# based on the Low
Level Reader Protocol (LLRP) for collecting data from the reader
and real-timely executing three processing components. The other
is developed with Matlab, which can perform off-line analysis when
obtaining data from the real-time system.

5 SYSTEM EVALUATION

In this section, we first account for the effectiveness of non-training
action recognition and then evaluate the performance of TagCon-
troller through extensive experiments in various aspects, containing
the impact of tag placement, the effect of removing individual di-
versity and resisting multipath as well as the feasibility of multiple
remote controllers.

5.1 Effectiveness of Non-training Recognition

Our intention for this design is to recognize all the defined actions
without any training or prestored profiles. However, there are two
action-specific numerical features, namely PD and PP, which seem-
ingly needs to be trained for obtaining a suitable threshold. As a
matter of fact, benefiting from meticulous designs of actions, these
two features are distinct enough to separate corresponding actions.
To account for this, we extract an example of these two features
for 10 actions performed by a user as depicted in Figure 8. The
values of PD for all press actions are several times or even more
than those of other actions. Similarly, the values of PP for ‘Up’ and
‘Down’ have the same effect, which indicates the effectiveness of
non-training recognition for those actions. In our implementation,
we set the thresholds of those two features, namely pd_thrsh and
pp_thresh in Algorithm 2, as 200 and 50 respectively.

5.2 Impact of Tag Placement

There is no doubt that tag placement on the cardboard expounds
significant impact of action recognition. As mentioned before, we
arrange four tags at the vertex of a square for the sake of generating
distinct phase profiles for each action. Thus, edge length of this
square defined as the distance between geometric centers of two
adjacent tags is an important factor which has a great influence on
the distinctiveness degree of action-specific features.

To acquire the best tag placement of battery-free remote con-
trollers, we invited a participant to perform each of ten actions for
20 times with square edge length varying from 2.55cm to 8.55cm
(taking the length of tags into account). Experimental results shown
in Figure 9 demonstrate that edge length of the square has a great
impact on the actions like ‘Left’, ‘Right’, ‘Forward” and ‘Backward’.
It is reasonable that action-specific features for these actions are de-
signed via different behaviors between ‘Left’ (‘Right’) and ‘Forward’

(‘Backward’). The smaller of edge length is, the fewer differences are
between them, resulting in low recognition rate. However, actions,
such as ‘Up’, ‘Down’ and four press actions, are much less impacted
by the edge length in that their features have nothing to do with the
edge length. Most importantly, the performance of TagController
is almost the same in the conditions when the length of edge is set
to 4cm and 6cm. Thus, in order to facilitate the operation, we set
4cm edge length as defaults in the following experiments.

5.3 Effect of Removing Individual Diversity

As discussed in section 2.2, users perform actions in a divergent way,
resulting in totally different phase profiles. Action-specific features
are meticulously designed for eliminating such wide variations. To
explore the robustness of this system against individual diversity,
we conducted a set of experiments with 10 volunteers performing
each action twenty times. We can observe from the confusion matrix
shown in Figure 11 that actions, i.e. ‘Left’, ‘Right’, ‘Forward’ and
‘Backward’, are more likely confused among each other, which
can be explained by the tendency of deflecting to the backward
or forward direction when performing ‘Left’ and ‘Right’. Likewise,
there exists a tendency of deflecting to the left or right direction
when performing ‘Forward’ and ‘Backward’. We can also find that
both of the average accuracy of ‘Press 1’ and ‘Press 2’ are lower
than those of ‘Press 3’ and ‘Press 4, which is caused by the larger
distance between the corresponding tag and the finger. The average
accuracy of all actions is 95.8% which verifies the effect of removing
individual diversity.

5.4 Effect of Resisting Multipath

The insensitivity to ever-changing surroundings has been briefly
touched upon in section 2.1. In order to visualize the capability of
resisting multipath, we perform two kinds of experiments inspect-
ing the results of insensitivity to static multipath like tables and
dynamic multipath like moving humans. In the static multipath
scenario, a user was performing actions in a place where a metallic
board was laid aside. In the dynamic multipath scenario, we asked
two to five volunteers walking around when a user was performing
actions. Each action was performed 20 times for both of these cases.
As we can observe from Figure 10, the average accuracy for each
action are almost the same in normal, static multipath and dynamic
multipath scenarios, which demonstrates the feasibility of utilizing
battery-free remote controllers in daily life.

5.5 Feasibility of Multiple Remote Controllers

The ability for resisting multipath lays a solid foundation for de-
veloping a system in which multiple remote controllers can work
simultaneously. To test the feasibility of this function, one volun-
teer was asked to sit very close to another. It is not difficult to
understand that there are 55 combinations of two actions including
45 different actions and 10 identical actions. These two volunteers
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Figure 11: Effect of Removing Individual Diversity

were requested to perform each combination 10 times. As illustrated
in Figure 12, the average accuracy of all ten actions is 94.3%, which
decreases only a little when compared with that of one remote con-
troller shown in Figure 11 and manifests the feasibility of multiple
remote controllers.

6 RELATED WORK

This section briefly reviews the related work implemented on COTS
RFID devices, including novel interactive interfaces as well as ac-
tivity and gesture recognition.

6.1 Innovative Interactive Interfaces

UHF RFID is normally considered as the enabling tool for automatic
identification of objects. For the past few years, it has been reveal-
ing its promising applications in innovative interactive interfaces
on account of its wireless, inexpensive and battery-free sensing
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Figure 12: Feasibility of Multiple Remote Controllers

ability. RF-IDraw [26] develops a virtual touch screen by accurately
tracing the trajectory of tags with eight spatially distributed anten-
nas. Different from RF-IDraw, PolarDraw [23] implements almost
the same kind of interfaces by leveraging information from each
polarization angle to infer the orientation and position of a RFID-
tagged pen. Tagball [15] implements a 3D mouse which detects the
motion behaviors of a set of tags by utilizing the Extended Kalman
Filter. IDsense [13] provides an unobtrusive human object interac-
tion interfaces through classifying several motion events and two
kinds of touch events by Support Vector Machine (SVM). GaussR-
FID [14] is a hybrid RFID and magnetic-field tag sensing system
that supports interactivity when embedded in retrofitted or new
physical objects. PaperID [12] uses sensing and signal processing
techniques to turn RFID tags into simple paper input devices and
further creates a wide variety of interaction sensing types. RapID
[25] develops a framework for adding low-latency input sensing
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to objects through combining a probabilistic filtering layer with
a montecarlo-sampling-based interaction layer. Inspired by these
glittering novel interfaces, we put forward the idea of wireless and
battery-free remote controllers.

6.2 Activity and Gesture Recognition

RFID based activity and gesture recognition is also a hot topic
which attracts a lot of attention. The corresponding Doppler shift
profile of each free-weight activity can serve as a reliable signature
for each activity, thus FEMO [6] leverages this profile for on-site
free-weight activity recognition and assessment. ShopMiner [24]
harnesses the unique spatial-temporal correlations of time-series
phase readings from backscatter signals of passive RFID tags to de-
tect and record comprehensive shopping behaviors. GRfid [30] can
recognize six device-free gestures by capturing the spatial phase
features of various gestures. However, all of them are built on oner-
ous training or prestored profiles, which is quite time-consuming
and labor-tensive. Thus, we propose an action recognition system
without any training or prestored profiles.

7 CONCLUSIONS

This paper proposes the first universal wireless and battery-free
remote controller called TagController. In order to recognize ac-
tions without any training or prestored profiles, we elaborately
devise tag placement and extract action-specific features based on
careful observations and sufficient analysis. TagController is work-
ing as a pipeline which consists of three functional components,
including preprocessor, FSM based action detector and action rec-
ognizer. The whole system is implemented by COTS devices and
self-made remote controllers. Experimental results demonstrate
that TagController can achieve an average recognition accuracy of
95.8% and 94.3% in the scenarios of one and two remote controllers,
respectively. Meanwhile, TagController shows strong insensitivity
to multipath surroundings, which validates the availability and
robustness of our system.
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