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ABSTRACT
Workflow recognition is a key technique in the field of activity
recognition with benefits of monitoring the step being performed
in the workflow, detecting the missing step, and providing assis-
tance to the performer of the workflow, among others. In this paper,
we present an unobtrusive workflow recognition system called
RFlow-ID, which is the first device-free, battery-free and privacy-
preserving workflow recognition system based on RFID technique.
RFlow-ID perceives the use and movement of associated objects in
the workflow using fine-grained phase information extracted from
low-level RF signal, and infers the most likely sequence of work-
flow activities via a VQ-HMM model. We implement RFlow-ID on
COTS RFID devices and evaluate it through a common biomedical
experiment. The results validate the high recognition accuracy and
robustness of our system.
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1 INTRODUCTION
Activity recognition is one of the most hot topics in the area of
ubiquitous computing. It has fostered a broad range of innovative
applications in eldercare[37], healthcare[10] and smart homes[18],
etc.. Basically, the goal of activity recognition is to infer the humans’
∗Dong Wang is the corresponding author
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behaviors from a series of observations on the humans’ actions,
the vital signs and the environmental conditions. For example, in
an eldercare scenario, the caregivers use sensors to recognize the
Activities of Daily Living (ADL) of elderly people such as walking,
eating and lying down in order to provide them with the proactive
assistance[31].

Although many researchers have made explorations into activity
recognition, few of them focused on recognizing the complex work-
flow of activities. The workflow is generally defined as a temporally
ordered group of procedural activities (steps) for accomplishing
a task in which people and tools are involved in each step of the
process[4]. Unlike ADL recognition, in which the intrinsic feature
is the ability to recognize isolated actions or activities (e.g. walking,
eating, lying down, etc.)[30], the workflow recognition is more com-
plex and it needs to have context-aware capabilities since each step
in the workflow is temporal dependent. For example, the workflow
recognition needs to remind the novice what the next step is, and
whether there are missing steps.

Existing research on automatic workflow recognition mainly
relies on wearable sensors, environmental sensors and cameras. (1)
Wearable-sensor-based methods utilize on-body motion sensors
(accelerometer, gyroscope, etc.) to sense the movements of body
parts and infer steps of the workflow[25, 35, 42, 45]. For exam-
ple, authors in [35] presents a wearable system which combines
Google’s Glass with a wrist-worn accelerometer to capture and
and recognize steps in a wet laboratory environment. Although the
sensor-based methods have the ability to identify the workflow, the
requirement of wearing additional devices on the body is obtrusive
and inconvenient to people. (2) Environmental-sensor-based meth-
ods deploy dedicated sensors to record the environment variables
such as temperature, dust and pressure and provide context-aware
activity recognition[11, 17, 44]. These methods are unobtrusive
since they are device-free for human body, but they require bat-
teries to supply these sensors, which leads to significant energy
consumption and deployment overhead. (3) Camera-based solu-
tions employ cameras to record the video sequence and recognize
the workflow with computer vision algorithms[19, 29, 39, 40], such
as a weakly supervised workflow recognition framework which is
trained from unlabeled videos of recorded experiments in a syn-
thetic biology laboratory[19]. The camera-based solutions can pro-
vide fine-grained workflow recognition, but they may raise serious
privacy concerns and not suitable for deployment in non-public
areas (laboratories, workstations, etc.). Moreover, the strict require-
ments for light conditions and high computational cost are also the
drawbacks of these solutions.
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In this paper, we present a device-free, battery-free and privacy-
preserving solution called RFlow-ID to recognize the workflow
based on the passive UHF RFID system. The RFlow-ID originally
exploits Commercial Off-The-Shelf (COTS) RFID products to infer
the workflow from the status of used objects. It is well-known that
RFID (radio-frequency identification) is an enabling tool for auto-
matic identification of objects, which mainly consists of a RFID
reader and several RFID tags. The RFID reader uses electromag-
netic fields to identify, track and supply energy to the RFID tags
attached to objects (cartons, books, people, etc.). Normally, the RFID
technology is used in tracking of goods and access management.
However, recent research has shown that the phase information
from the physical RF signal between the RFID reader and tags is
a powerful object motion sensing modality for many applications
such as indoor localization[41], sleep diseases monitoring[27] and
gait identification[38]. Therefore, we attempt to leverage the phase
information received from RFID tags affixed on the relevant objects
to sense the workflow.

Based on the phase information collected from the RF signal, we
apply a sliding-window based feature extraction method to process
the phase data in real time, and introduce the VQ-HMM model
which is widely used in speech recognition to establish the model
of workflow recognition. As each step in the workflow may consist
of some actions such as picking up and rotating the object, previous
workflow models[35, 45] need to predefine the typical actions in
the workflow by manual analysis, and then use classification algo-
rithm such as kNN to identify these typical actions for establishing
the timing model. However, the typical actions may change with
another different workflow, which requires new analysis by the
human, for example, the manual production line may replace the
processed product every few months due to the new order, result-
ing in different processing actions, and these models are difficult
to adapt to the change of workflow. In contrast, our method do
not predefine the typical actions by human analysis, but allow the
model to automatically cluster the statistical features. As a more
general method, VQ-HMM leverages VQ (vector quantization) tech-
nique which is implemented through K-means algorithm, to cluster
and compress feature vectors from the phase profile into a highly
representative low-dimension code sequence. Then, it establishes
the timing model using HMM (hidden Markov model), which can
estimate the most probable hidden states (activities in the workflow)
based on the observations (the code sequence). As a special form
of HMM, VQ-HMM has benefits including less requirements for
training data than traditional HMMmodel because it does not need
training data for any action, and less computation overhead since
the dimension of features is reduced.

We chose an application scenario of subculturing cells, a basic
experiment usually done by one person in the biomedical laboratory,
for testing the feasibility of our system. Subculturing, or passaging
cells is frequently used in biomedical experiments, as it allows rapid
culture and expansion of cell types for experimental analysis. The
experiment of subculturing cells is a common procedure wherein
cells from a given culture are divided into new cultures and fed
with fresh media to facilitate further expansion. This procedure is
a typical workflow, containing 12 sequential activities (steps) as
shown in Table1. To ensure the success of subculturing cells, the
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Figure 1: Application scenario

entire workflow needs to be executed step by step. Recognizing
each activity in the workflow has three main benefits including
(1) guiding through the experiment, for example, reminding the
novice what the next step is. (2) checking for errors in performing
workflow activities, such as detecting if there are missing steps. (3)
automatically recording time information in performing workflow
activities, such as providing the duration of each step for skill
assessment.

Figure 1 shows the deployment of RFlow-ID system. In most bio-
logical experiments, the researchers’ activities involve interactions
with experimental items or instruments. During the execution of
the subculturing experiment, each activity in the workflow also
involves an interaction with experimental objects such as pipette,
petri dishes, and so on, which are listed in Table 1. These relevant
objects interacted by the participant are affixed RFID tags, and
a RFID reader is deployed on the ceiling above the experimental
platform.

The main contributions of the RFlow-ID system are summarized
as follows:

• To the best of our knowledge, this is the first attempt to
design a device-free, battery-free and privacy-preserving
workflow recognition system based on the COTS RFID. We
have demonstrated that the low-level phase profiles from
RF signal are rich enough for workflow recognition in a
biological experiment that requires a series of refinement
processes.

• We propose to use VQ-HMM algorithm to model the gen-
eral workflow recognition system based on the data of
RFID phase profiles with less computational overhead.

• We implement RFlow-ID and comprehensively evaluate
the performance of RFlow-ID. Experimental results show
that RFlow-ID can achieve 90.4% recognition accuracy in
recognizing each step of the workflow.

The rest of this paper is organized as follows. In Section 2, the
background of RFID technique is introduced. Section 3 describes
the architecture of RFlow-ID, and presents the design of each com-
ponent. The implementation and evaluation results of RFlow-ID
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are presented in Section 4, and Section 5 reviews the related works
from literatures. Section 6 concludes the paper.

Table 1: The workflow of subculturing cells containing 12
sequential activities

workflow of subculturing cells associated items

A1 remove the tissue culture media pipette (tag10), petri dish A (tag7)
A2 wash the cells with PBS pipette (tag10), petri dish A (tag7),

PBS (tag4)
A3 add trypsin to the cells pipette (tag10), petri dish A (tag7),

trypsin tube (tag2)
A4 incubate cells in CO2 culture incu-

bator for about 1 minute
petri dish A (tag7), CO2 culture in-
cubator (tag1)

A5 take out the petri dish from the
CO2 culture incubator

petri dish A (tag7), CO2 culture in-
cubator (tag1)

A6 stop the proteolysis by adding
fresh tissue culture media

pipette (tag10), petri dish A (tag7),
tissue culture media container
(tag5)

A7 spray cells with pipette pipette (tag10), petri dish A (tag7)
A8 transfer the cell suspension into a

conical tube for centrifugation
pipette (tag10), petri dish A (tag7),
conical tube (tag3)

A9 put the conical tube into centrifuge conical tube (tag3), centrifuge
(tag6)

A10 prepare two petri dishes with fresh
tissue culture media

pipette (tag10), petri dish B (tag8)
and C (tag9), tissue culture media
container (tag5)

A11 take out the conical tube from the
container

conical tube (tag3), centrifuge
(tag6)

A12 transfer the cell suspension to the
two petri dishes

pipette (tag10), conical tube, petri
dish B (tag8) and C (tag9)

2 BACKGROUND
Passive UHF RFID systems work using backscatter communication.
Tags harvest power from the radio signal emitted by the readers,
and reply to the readers’ query bymodulating the backscatter signal
using ON-OFF keying. Present COTS RFID readers, for example,
Impinj Speedway in our implementation, can not only obtain the ID
of tags, but also report the low-level backscatter signal characteris-
tics such as RSSI, phase and Doppler shifts[13]. Prior work[47][26]
has demonstrated that the detail phase information exhibits a more
reliable and fine-grained indicator of multipath changes than other
metrics. Thus our system exploits the phase information for work-
flow recognition.

The relationship between the time-varying backscatter signal
s (t ) and its phase information φ (t ) can be expressed by

s (t ) = a(t ) · e−jφ (t ) (1)

where a(t ) is the complex valued representation of attenuation. The-
oretically, the phase changes with the signal propagation distance
d (t ) between the reader and the tag[46], denoted by

φ (t ) =
4π
λ
d (t ) + c (2)

where c is initial phase offset which is related to the hardware char-
acteristics. However, in most practical RFID setups, the backscatter
signal between the reader and the tag is the superposition of one di-
rect path signal sdir (t ) andmany other reflected path signal smul (t )
due to the multipath effect from other objects such as walls, desks
and human hands, etc.. Let us consider a dynamic environment,
for example, a person interacts with the object attached with the
tag in the workflow activity, the number of reflected paths N (t )

may also change over time due to the movement of people, so the
backscatter signal s (t ) can be expressed by the following equation:

s (t ) = sdir (t ) + smul (t )

= adir (t ) · e
−jφdir (t ) + amul (t ) · e

−jφmul (t )

= adir (t ) · e
−j 4π

λ ddir (t )+cdir +

N (t )∑
k=1

ak (t ) · e
−j 4π

λ dk (t )+ck

(3)
Therefore, the received signal phase information φ (t ) can be further
derived as

φ (t ) = arctan
adir (t ) sinφdir (t ) + amul sinφmul (t )

adir (t ) cosφdir (t ) + amul (t ) cosφmul (t )
(4)

Equation (3) and (4) indicate that the phase is determined by the dis-
tance ddir (t ) of the direct path, the distance dk (t ) of each reflected
path, and the number of the reflected path Nt . When a person is
approaching the object attached with the tag, Nt and some dk (t )
will change, and when the person picks up and uses the object,
ddir (t ), Nt and some dk (t ) will change, eventually leading to the
phase change. In theory, if a person interacts with the tag multiple
times in the same way, that is, ddir (t ), Nt and dk (t ) have the same
(similar) change in each interaction, then the phase will have the
same change in each interaction.

We carry out a preliminary experiment to validate our conclusion.
A person is asked to perform the step A3 in Table 1 (add trypsin to
the cells) 3 times. During the execution, we study the phase profiles
of some associated tags (tag2 on the trypsin tube and tag10 on the
pipette), and another tag (tag4 on the PBS) that is not used in A3.
Figure 2 depicts the experimental scene and the phase profiles for
each tag, where each tag provides the data for the 3 executions
and expressed as, for example, Taд2′,Taд2′′ and Taд2′′′. We can
see that the phase of each tag has an amplitude change over time
in the execution, and even the tag4 (unused item) also has a large
change from 12s to 15s. It is also observed that the phase profiles
for each execution are highly similar, which is consistent with our
theoretical speculation. This fact motivates our design of RFlow-ID,
which will be introduced in the next section.

3 SYSTEM DESIGN
In this section, we present the design of RFlow-ID. We start by
an overview of RFlow-ID architecture. Then, we lay out detailed
description on each module in subsequent subsections.

3.1 System Overview
Figure 3 shows the overview of our system. The RFlow-ID architec-
ture consists of five main modules: the phase collector, the feature
extractor, the vector quantization (VQ) module, the HMM module
and the sequence analysis (SA) module. The RFlow-ID first mon-
itors and abstracts the raw phase profile of each RFID tag from
the RF signal using the phase collector. A series of preprocessing
processes are performed in the phase collector, for example, the raw
phase profiles are unwrapped to eliminate phase periodicity and
then passed through the Hampel identifier as well as the weighted
moving average filter to remove the outliers induced by burst noises
and smooth the values in the phase collector. The feature extrac-
tor then divides the streaming phase profiles into a set of sliding
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Figure 2: The phase profiles of tag4, tag2 and tag10 are col-
lected when the participant performs step A3 in the work-
flow

windows and extracts the novel features such as standard deviation
and signal energy into a feature vector from the phase profiles
within each sliding window. And then, the VQ module leverages a
codebook builder to cluster the feature vectors of all windows and
uses the category number and its centroid point as an element in
the codebook, with respect of the training set. And a quantizing
encoder is used to encode a feature vector into the category number
based on its Euclidean distance from the centroid in the codebook.
After that, the feature vectors of a series of windows are encoded
into a coding sequence, provided to the HMM module, which uses
Baum-Welch Algorithm to train the parameters of the model and
the Viterbi algorithm to estimate the most probable hidden states
(activities of the workflow) with the coding sequence. At last, the
SA module analyzes the duration of each activity and gives the final
speculative information, for example, it is able to remind what the
next step is, and whether there are missing steps.

3.2 Phase Collector
The phase collector is responsible for monitoring and abstracting
the raw phase profile of each RFID tags from the RF signal. A series
of preprocessing processes are performed in the phase collector as
follows.

Phase Unwrapping The first step to process the raw phase
measurements is phase unwrapping[47]. The reason is that the sig-
nal phase reported by the reader is a periodic function ranging from
0 to 2π , termed as wrapped phase[47]. When the phase changes,
it may increase gradually to 2π , then jump to 0, or may decrease
to 0, then continue to decrease from 2π , leading to inconvenience
for further analysis. We adopt the method in [23] to unwrap the
phase values, which assumes the absolute difference of two adjacent
reading phase value is smaller than π .

SmoothingAfter phase unwrapping, RFlow-ID uses theHampel
identifier to eliminate the outliers induced by some burst noises. It
declares the phase samples out of the interval [µ − γ × δ , µ + γ × δ ]

as outliers, which means replacing any samples in the sliding win-
dow that is more than or less than γ times median absolute devi-
ation (MAD) from the median µ of the window with this median.
The sliding window is composed of the current sample and its 2γ
surrounding samples, and the most widely used value of γ is 3.
Then we employ a weighted moving average filter to further reduce
the high-frequency noise and smooth the data. At last, the system
removes the Direct Current(DC) component of phase stream by sub-
tracting the constant offset which can be calculated via a long-term
averaging over the stream.

Interpolation In RFID communications, the tags reply unevenly
spaced in time domain due to tags collision, packet loss and other
delays. Even though there exists only one tag in the interrogation
area, the phase sequences are still uniformly sampled. This makes
it difficult for further process, like feature extraction. To obtain
evenly spaced phase samples, we adopt linear interpolation with
5ms apart between consecutive values to process the phase stream.

3.3 Feature Extractor
The feature extractor is responsible for dividing the streaming
phase profiles into a set of sliding windows, and extracting the
novel features into a feature vector from the phase profiles within
each sliding window. Assuming that the workflow involves r RFID
tags, the collected phase profiles for all tags can be denoted by
S =
{
φ1,φ2, · · · ,φr

}
. For each phase profile, we divide the entire

sampling sequence into a set of sliding windows, with window size
w , that means a window contains w phase sampling points (In our
implementation, the window size is 100 and the overlap is 0.5). The
set of phase profiles in the jth window is therefore

Sj =
{〈
φ1, j ,φ1, j+1, · · · ,φ1, j+w

〉
, · · · ,

〈
φr, j ,φr, j+1, · · · ,φr, j+w

〉}
(5)

Feature Selection Now we should select features from the sam-
pling sequence over the sliding window. In one sliding window,
we let xn ∈

〈
φi, j ,φi, j+1, · · · ,φi, j+w

〉
refers to one particular phase

value with respect to tag i in the window segment. We calculate
the statistical features in the time-frequency domain and adopt
the MRMR method[32] to select three features that yield the best
performance. The first feature is standard deviation, which reflects
the degree of data discretization. We observe that the standard de-
viation of the phase profile is almost zero when the object affixed
tag is still, and the standard deviation is much greater than zero
when the object is picked up or moved. Thus, standard deviation is
an important feature of distinguishing object motion or still. The
standard deviation is defined as

Std =

√√
1
w

w∑
n=1

(xn − x̄ )
2 (6)

where x̄ is the mean of the phase sampling sequence in the window.
The second feature is the peak-to-peak amplitude, which represents
the change between the peak (highest value) and trough (lowest
value) of the signal. The peak-to-peak amplitude can help distin-
guish between activities that are characterized by different ranges
of movements, and it is defined as

P2PA =max (x ) −min (x ) (7)
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Figure 3: Architecture of RFlow-ID

wheremax (x ) refers to themaximum in the window segment while
min (x ) refers to the minimum value. The third feature is the signal
energy which refers to the area between the signal curve and the
time axis. The signal energy reflects the overall signal strength
which is expressed as

E =
w∑
n=1

x2
n (8)

For the phase profiles of r tags, each phase file can be extracted
with three features, which means that the set of phase profiles Sj
is extracted as Fj = ⟨α1,α2, · · · ,αm⟩, where α refers to the feature
and the number of the features ism = 3 × r .

Feature Scaling If a feature has a larger range of values than the
other features, then the further analysis result will be dominated by
this feature. Feature scaling technique is used to scale the feature
values and normalize them between 0 and 1. For any feature αi in
Fj , a Min-Max scaling approach is implemented by this formula:

αi
′ =

αi −min (α )

max (α ) −min (α )
(9)

This method scales the feature values a fixed range 0 to 1, where the
α ′i is the normalized feature values, andmax (α ) andmin (α ) are
the maximum and minimum values of the original feature values,
respectively. Consequently, the output of feature extractor for the
jth sliding window is Fj =

〈
α1 ′,α2 ′, · · · ,αm ′

〉
.

3.4 VQ Module
Vector quantization (VQ) is an efficient technique that was originally
used for data compression and has been successfully applied in
various recognition applications such as speech recognition [5] and
pattern recognition[2]. The essence of VQ is a lossy compression
method, which encodes values from a multidimensional vector
space into a finite set of values from a discrete subspace of lower
dimension.With VQmodule, we do not predefine the typical actions
by manual analysis since it automatically analyzes and summarizes
the multidimensional feature vector. In addition, VQ is suitable for
real-time applications such as fast planar-oriented ripple search
method[6] and real time video-based event detection[21] since the
lower-dimension vector requires less storage space and achieves
faster processing speed

The basic idea of VQ module is to map (or compress) the m-
dimensional vector, that is the output of the feature extractor Fj =〈
α1 ′,α2 ′, · · · ,αm ′

〉
in Section 3.3, to a finite set cb =

{
c1, c2, · · · , ck

}
.

The set cb is called codebook which can be generated in spatial
domain by clustering algorithms such as the classical Linde-Buzo-
Gray (LBG) algorithm[34] and the K-means based optimization

Figure 4: The collected phase profiles from tag1 to tag10, and
the output of VQ module and HMMmodule

method[16]. The K-means algorithm[24] is an unsupervised clus-
tering algorithm that can partition a series of feature vectors into k
clusters in which each feature vector belongs to the cluster with
the nearest mean. In this paper, we choose the K-means based
optimization method to generate the codebook.

The VQ module consists of two parts: a codebook builder and a
quantizing encoder. Given a set of feature vectors {F1, F2, · · · , Fn } as
training data, where each vector is a m-dimensional feature vector
of one sliding window, the codebook builder leverage the K-means
algorithm to partition the n feature vectors into k (k ≤ n) clusters.
Each cluster is represented by its cluster index and centroid vector.
So the indexes of each cluster are used as elements in the codebook,
that means cb = {1, 2, · · · ,k }. After that, the quantization encoder
can map a feature vector to a cluster index in the codebook Fj →
O j ∈ cb, which is closest to this feature vector, according to the
Euclidean distance between the feature vector and all the centroid
vectors. Thus, the O j is the output of VQ module which can be
provided to HMMmodule as observable state. Figure 4(b) illustrates
the output of VQ module when we encode the feature vectors of
the phase profile in Figure 4(a) into 10 clusters (observable states)
for each sliding window.

3.5 HMMModule
A hidden Markov model (HMM) is a popular tool for modeling time
series data that is widely used in the field of speech recognition[1, 3,
12]. HMM belongs to generative probabilistic model that consists of
an observable state and a hidden state at each sliding time window.
In this paper, the observable state O j in the jth time window is
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obtained from the VQ module and the hidden state is the activ-
ity (step) labels in the workflow as shown in Table 1, denoted by
Hj ∈ {A1,A2, · · · ,A12}. Given a sequence of observable states, we
cannot directly infer the activity sequence that produced these ob-
servations, since multiple activities may generate similar observed
states, for example, the step1 (remove the tissue culture media) and
the step7 (spray cells with pipette) involve the same items (pipette
and petri dish A), so a similar phase profile may be generated and
eventually the same observed state may be obtained. Thus the ac-
tivity cannot be recognized by noticing the observable states in
isolation. HMM can take into account the observable states in the
sequence and provide a context-aware activity recognition method.

The goal of the HMM module is to infer most probable activity
series (hidden state sequence of HMM) from the observation series,
which is a labeling problem of single-layer HMM[33]. The hidden
Markov model relies on the assumption that the hidden state (step)
at time t depends only on the previous hidden state at time t − 1,
and the current observable state depend only on the current hidden
state. With this assumption, we can specify an HMM using a triplet
consisting of λ = (π ,T ,E), where π is the vector of initial state
probabilities, representing the probability with which a step occurs
at the beginning of the hidden state sequence,T is the matrix of the
state transition probability between two steps, and E is the matrix
of emission/observation probability, representing the probability
of a particular step generating a specific associated observable
state. Given the observable state sequence O and the hidden state
sequence H, the hidden Markov model is in fact a probability model
with the hidden variable denoted by

P (O |λ) =
∑
H

P (O |H , λ)P (H |λ) (10)

This triplet of HMM parameters λ can be trained by Baum-Welch
algorithm[33] when a subject performs the activity series of the
complete workflow. Given a set of observable state sequences, the
Baum-Welch algorithm leverages the classical EM algorithm[7]
to find the maximum likelihood estimate of the parameters λ∗ =
arдmaxθ P (O |λ). After training the model parameters, if the VQ
module produces the observation sequence ⟨O1,O2, · · ·OT ⟩, we
can utilize Viterbi algorithm[33] to generate the most likely se-
quence of workflow activities ⟨H1,H2, · · ·HT ⟩ in real time based
on the estimated triplet of HMM parameters λ∗. Figure 4(c) depicts
the estimated hidden states using Viterbi algorithm based on the
sequence of observable states in Figure 4(b), and the horizontal
axis represents the actual period of each step, separated by the blue
vertical lines.

3.6 SA Module
The sequence analysis (SA) module is responsible for counting
the duration of each activity of workflow from the hidden state
sequence ⟨H1,H2, · · ·HT ⟩. The duration of one activity Ai can be
calculated by multiplying the number of consecutive occurrences
of Ai in a hidden state sequence by the duration of a sliding win-
dow. The SA Module can be designed for different applications, for
instance, to detect whether there are any key steps to be missed,
or to detect which step is being performed now and to assess the
proficiency of the beginner. In addition, the SA module can be used
to reduce the recognition error of the previous module, by detecting

and removing outliers in the hidden state sequence. In statistics,
an outlier is the individual value that is significantly deviated from
other values, which can be detect by Grubbs’ test[9]. For example,
if the activity’s average execution time is one minute, but the se-
quence shows that an activity lasts only one second, it is most likely
that there was an recognition error in the previous modules, which
could be avoided by the SA module.

4 IMPLEMENTATION & EVALUATION
In this section, the implementation of RFlow-ID is described and
the evaluation results are presented. The recognition accuracy of
workflow activity will be verified by experiments. Then, we evaluate
some applications of RFlow-ID workflow recognition. At last, we
discuss the factors affecting the recognition performance of RFlow-
ID.

4.1 Implementation
HardwareWe implement RFlow-ID using off-the-shelf commercial
RFID devices without any hardware modification. We employ an
Impinj Speedway R420 reader equipped with a directional antenna
(Laird S9028PCR with 9 dBi gain). The reader is compatible with
EPC Gen2 standard, and operates at a fixed working frequency
of 920.675MHz. To ensure a high sampling rate of phase data, the
reader mode is set to "Max Throughput", which supports the highest
data rate, and the search mode is set to "dual target"[14]. The size
of the reader antenna is 259mm × 259mm × 33.5mm. The type of
the tags is ALN-9710 with a size of 94.8mm × 8.1mm.

Software We adopt the Low Level Reader Protocol (LLRP) to
support the communication between the reader and the tags. The
Impinj Reader provides the API for RF phase reporting via an ex-
tension of the EPC LLRP. We implement the software using C#
for top-level module connection and phase collector module, and
Matlab for other modules like feature extractor, VQ module, etc..

4.2 Recognition Accuracy of Workflow Activity
The first experiment for evaluating the performance of RFlow-ID
is to ask a participant to perform a complete workflow step by step
from A1 to A12 for 20 times. The RFlow-ID acquires the phase
data from the phase collector during each execution of workflow,
and provides the inferred sequence of activity labels by the HMM
module. For evaluating the inferred sequence, the ground truth is an
actual sequence of activity labels gathered by manually recording
the duration of each activity, and annotating each time window of
the collected phase profile with actual activity label.

We perform 10-fold cross validation on the participant’s phase
profile dataset and generate an average confusionmatrix. Figure 5(a)
shows the confusion matrix. Each row of the matrix represents the
actual activity label and the number of corresponding data points
which are normalized, while each column of the matrix represents
the inferred activity label by the RFlow-ID and the normalized
number of corresponding data points. In contrast, Figure 5(b) shows
the confusion matrix of accelerometer based method. A wrist 3D
acceleration sensing unit is used to capture motion data from the
participant’s dominant hand with a sampling rate of 50Hz. The
data of the X, Y and Z triaxial accelerometers collected during
the execution of the workflow are also processed by the feature
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extractor, the VQ module and the HMM module, and the sequence
of activity labels can also be inferred.

Recognition accuracy is the most common metric for evaluat-
ing recognition performance which is calculated as the ratio of
correctly-classified data points to total data points, this means the
accuracy can be calculated from the confusion matrix by summing
the values along the diagonal and dividing by the sum of all of the
values in the matrix. Referring to Figure 5(a) and 5(b), the recogni-
tion accuracy of RFlow-ID is around 90.4%, while the recognition
accuracy of accelerometer based method is around 75.8%. Further-
more, precision, recall and F1-scores can be calculated based on
the confusion matrix of each method, which are listed in Table
2. It is visible that the RFlow-ID method yields better recognition
performance due to higher precision, recall and F1-scores than
accelerometer based method.

Table 2: Precision/Recall/F1-scores of RFlow-IDmethod and
accelerometer based method

RFlow-ID method Accelerometer based method
Precision Recall F1-score Precision Recall F1-score

A1 1.00 0.97 0.98 0.97 0.91 0.94
A2 0.96 0.90 0.93 0.75 0.65 0.70
A3 0.86 0.93 0.89 0.65 0.88 0.75
A4 0.97 0.90 0.94 1.00 0.83 0.91
A5 0.92 0.94 0.93 0.90 0.77 0.83
A6 0.92 0.97 0.94 0.61 0.94 0.74
A7 0.86 0.93 0.89 0.91 0.34 0.50
A8 0.75 0.88 0.81 0.69 0.81 0.74
A9 0.98 0.67 0.80 0.77 0.86 0.81
A10 0.85 0.99 0.92 0.76 0.85 0.80
A11 0.96 0.85 0.90 0.93 0.31 0.46
A12 0.89 0.93 0.91 0.64 0.96 0.77
Mean 0.91 0.90 0.90 0.80 0.76 0.75

4.3 Applications of Workflow Recognition
In this experiment, we explore the effectiveness of RFlow-ID in
specific applications of workflow recognition. Consider the case
where a novice has just begun to learn to do an experiment which
contains a lot of steps and operations, a crucial learning assistant
means is to remind beginners what is the next step. The prereq-
uisite for providing such a reminder is that the assistant system
needs to know which step the beginner is doing now. In addition,
the common mistake when a novice learns an operational process,
is missing an experiment step. Therefore, we provide the follow-
ing two applications as an example to verify RFlow-ID system’s
capabilities.

Monitoring the step being performed In order to recognize
what the current step is in real time, we select a participant to
perform the complete workflow for 20 times as a training set, and
then we provide 12 different test sets, which are performed by the
participant from A1 to A2, from A1 to A3 until execution from
A1 to A12, where each test set contains 10 repetitive execution
data. Figure 6 shows the results of test set identification using the
confusion matrix. The vertical axis represents the step in which the
participant actually performs, and the horizontal axis represents the
estimated step using RFlow-ID. The identification accuracy can be
calculated by summing the values along the diagonal and dividing
by the sum of all of the values in the matrix, which is around 94.2%.

Detecting the missing step We use the same training set data
as above, that is from 20 executions of complete workflow per-
formed by one participant. In order to detect the missing step, the
test set data is acquired from a participant performing the workflow
from A1 to A12 but missing one of the steps. Thus, there are 12
different test sets including missing A1, missing A2, and so on. Each
test set contains 10 repetitive execution data. Figure 7 illustrates the
identification accuracy of detecting the missing step. We can see
that the identification accuracy of missing A9 is the lowest. This
is consistent with the result of recognizing the complete workflow
in Figure 5(a), that is, the feature extracted in A9 will have a cer-
tain probability of being identified as A8 or A10. Nonetheless, the
identification accuracy of missing A9 is still 70%, and the average
identification accuracy is 83.3% for all test sets.

4.4 Factors affecting Recognition Performance
In this section, we investigate the factors affecting recognition
performance. We mainly focus on three factors: cross-participant,
training set size, and group size. The cross-participant describes
a situation which is often found in practice, that is, after we have
trained the system model, a person who is not in the training set
is used as a test sample, so the recognition performance may be
affected due to the individual diversity. The training set size refers
to the number of samples used to train the model, and the group size
refers to the number of participants used in the training model. We
apply cross-participant validation for evaluating the impact of cross-
participant, which is achieved with a Leave-One-Participant-Out
validation. For instance, we consider the following experimental
scenario: there are 5 participants, we collect the data from one of
those participants to perform the complete workflow 10 times as
a test set, and the data of the other 4 participants to perform the
complete workflow 20 times in total as a training set, where each
participant provides 5 training samples, so this cross-participant
validation is executed with the training set size of 20 and the group
size of 4.

Cross-participant Figure 8 depicts the performance impact of
cross-participant validation when the training set size is 20 and the
group size is 1, where the per-participant means that the data for
the training set and the test set are from the same participant, so the
group size is 0 and the training set size is also 20. The results show
the average F1-score for each step of per-participant validation is
0.90, while the average F1-score for each step of per-participant
validation is 0.74. On average, F1-Score of the cross-participant is
18% worse than per-participant, which is most likely caused by
that different participants performing the workflow in a slightly
different fashion.

Training set size Figure 9 indicates the impact of training set
size on the recognition performance. The training set size increases
from 10 to 50 for both cross-participant validation with group size
of 1 and per-participant validation. We can find that increasing
the training set size does not improve the recognition performance
of per-participant validation, but cause a slight decline of around
3%. For cross-participant validation, the most improved F1-score
is around 10% from training set size of 10 to 20, but there is no
significant change after the training set size increased to 20. Thus,
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(a) Confusion matrix of RFlow-ID (b) Confusion matrix of accelerometer based method

Figure 5: Confusion Matrices for analyzing the Recognition Performance

Figure 6: The confusionmatrix ofmonitoring the step being
performed
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Figure 7: The identification accuracy of detecting the miss-
ing step

the impact of the training set size on the recognition performance
is relatively small.

Group size Figure 10 shows the impact of group size on the
cross-participant validation when the training set size is 20. It shows

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

0.0

0.5

1.0

 

 

F
1
-s

co
re

 Per-participant
 Cross-participant

Figure 8: The impact of cross-participant

that the performance improved by about 5% from group size of 1 to 2,
and increased by about 15% from group size of 2 to 3, but decreased
by about 5% from group size of 3 to 4. During the analysis, it has
been concluded that the accuracy increases with the group size
(from 1 to 3) in the beginning since a larger group contains more
individual diversity. But then the system performance degrades
when the group size exceeds 3, this is because the training set
size in the experiment do not increase with the increase in group
size, which leads to the phenomenon of under-fitting. Therefore,
increasing the group size while also increasing the training set size
is conducive to improving the robustness of the system.

5 RELATEDWORK
In this section, we review the related literature in RFID-based sens-
ing and workflow recognition model.

5.1 RFID-based sensing
RFID is normally considered as the enabling tool for automatic iden-
tification of objects. However, recent research has shown that the
physical RF signal between RFID readers and tags can be a powerful
sensing modality for many applications and much attention has
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been paid on activity recognition, like fall detection[43], shopping
behavior mining[36] and exercise monitoring[8]. Authors in[15]
enable real-time fluid intake monitoring by a well-designed tag
attached smart cup, which can be used to ensure adequate hydra-
tion in older people. Researchers further explore the feasibility of
RFID-based human-computer interaction. Authors in[22]present a
battery-free device called Tagball for 3D human-computer interac-
tion by tracing the motion states of a group of tags. PaperID[20]
uses sensing and signal processing techniques to turn RFID tags
into simple paper input devices and further creates a wide variety
of interaction sensing types. Most of the state-of-the-art RFID re-
searches aim to recognize isolated actions or activities (e.g. walking,
eating, lying down, etc.). RFlow-ID differs from the researches in
that we focus on workflow recognition which has a temporal rela-
tionship between activities, and we leverage the operation-induced
low-level RF signal phase information to recognize the workflow
without wearing RFID tags or readers.

5.2 Workflow recognition model
In order to establish a workflow recognition model, the most preva-
lent methods are designed based on HMM. Oliver et al. [28] present
layered-HMMs model for event recognition in meetings based on
the data of multi-sensor fusion. The layered-HMMs model is used
to diagnose states of a user’s activity based on real-time streams
of video, audio, and computer interactions. The layered-HMMs
model contains different levels of data granularity, where each

layer is connected to the next layer via its inferential results, and
the event classification using multi-modal information is applied to
this model. However, with the increase in the number of layers, the
computational overhead will be greatly increased, so this method
is not suitable for real-time monitoring.

Philipp et al. [35] recognize the workflow using kNN-HMM
model based on the data of 3D accelerometer. This model consists
of two parts: action detection and protocol step detection. The
action detection first leverages kNN to recognize the basic actions
such as pestling and pipetting, then the protocol step detection
uses HMM to recognize the steps of workflow, where hidden states
refer to steps in the experiment protocol, and observable states
map to the actions involved in that steps. However, in this model,
the recognition performance of the protocol step detection part is
greatly influenced by the action detection part. The results shows
that the mean F1-score of the action detection part is around 70%,
and the protocol step detection part is only 56%.

Compared to existing modeling approaches, RFlow-ID applies
VQ-HMM for modeling the workflow recognition system based
on the data of RFID phase profiles. We use VQ method combined
with single-layer HMM as much as possible to reduce the computa-
tional overhead of the model, while the system can achieve high
recognition performance.

6 CONCLUSION
This paper proposes a workflow recognition system based on COTS
RFID, called RFlow-ID. In order to recognize each step in a work-
flow, the RFlow-ID leverages the phase information from low-level
RF signal to perceive the use and movement of associated objects
in the workflow, and uses VQ-HMM model to infer the most likely
sequence of workflow activities. The system is implemented on
COTS RFID devices, and extensive experimental evaluation under
various conditions validates the high recognition accuracy. Experi-
mental results show that RFlow-ID can achieve 90.4% recognition
accuracy in recognizing each activity of the workflow. Besides,
RFlow-ID has around 94.2% identification accuracy for monitoring
the step being performed, and around 83.3% for detecting the miss-
ing step. We envision that our system can be an enabling tool for
many personalized services such as learning assistant and skills
assessment.
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