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ABSTRACT
Contactless acoustic motion tracking enables new opportunities to in-
teract with smart devices, such as smartphones and voice-controlled
smart assistants. The speakers and microphones integrated in these
devices provide unique opportunities to simultaneously track multi-
ple targets in a fine-grained manner. To this end, we propose a system,
namely FM-Track, that enables contactless multi-target tracking us-
ing acoustic signals. We first introduce a signal model to characterize
the location and motion status of targets by fusing the information
from multiple dimensions (i.e., range, velocity, and angle of targets).
Then we develop a series of techniques to separate signals reflected
from multiple targets and accurately track each individual target. We
implement and evaluate FM-Track on both research-purpose hard-
ware platform (i.e., Bela) and commercial devices (i.e., smartphones
and smart speakers). Extensive experiments show that FM-Track can
successfully differentiate two targets with a spacing as small as 1 𝑐𝑚,
and achieve a median tracking accuracy of 0.86 𝑐𝑚 and 0.11 𝑐𝑚 for
absolute range and displacement estimates respectively. For multi-
target tracking, FM-Track can accurately track four targets and the
tracking range can be up to 3𝑚.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile comput-
ing systems and tools.
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Figure 1: Application scenarios for concurrently tracking mul-
tiple hands and fingers using smart devices.

1 INTRODUCTION
Speakers and microphones are essential components in many smart
devices that people interact with on a daily basis, such as smart-
phones, personal computers, smart TVs, and smart speakers (e.g.,
Amazon Alexa). Owing to the continuous advancement in process-
ing capability, recent research has successfully demonstrated the
possibility to extend their primary use from simple audio playing
and voice-based interactions to multifarious applications, such as
localization of a sound source [17, 29, 33], contactless motion track-
ing [28, 34, 45, 53] and gesture recognition [11, 31, 55], as well as
monitoring of important physiological parameters in humans (e.g.,
fatigue detection for drivers [46, 50] and respiratory activities [5,
42, 44]). Specifically for contactless motion tracking, compared to
other wireless signals such as WiFi [21, 49] and RFID [43, 51],
acoustic signals have inherent superiority for sensing granularity and
precision, owing to its low propagation speed (340𝑚/𝑠) in the air.

Although recent efforts have pushed the granularity of acous-
tic tracking to millimeter level [28, 34, 45, 53] and extended the
sensing range to 4.5𝑚 [24] without requiring users to instrument a
device, there still exist several fundamental challenges that hinder
the widespread adoption of acoustic tracking in the real world. First,
studies to date pose difficulties in tracking more than one target due
to the inherent nature of contactless tracking that relies on signals
reflected from the targets. Signals reflected from multiple targets
are mixed at the receiver, and thus, it is difficult to separate them
to obtain the context information of each individual target. This
problem becomes even more challenging when targets are close
to each other. Second, it is non-trivial to achieve a similar level of
tracking accuracy for multiple targets comparable to prior research
on single-target tracking [24, 28, 45]. More specifically, the signals
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reflected from close-by targets could interfere with one another,
thereby significantly degrading the tracking accuracy. Last but not
least, while existing work has achieved millimeter-level accuracy
in relative displacement and trajectory tracking of a single target,
the estimation of the absolute distance between the target and the
sensing device still offers room for improvement [6, 45].

In this paper, we propose to employ chirp-based signals to push
the boundaries of acoustic tracking in three aspects: 1) enable multi-
target sensing; 2) boost the multi-target tracking granularity to finger
level; and 3) accurately track not only the target’s relative distance
change but also its absolute distance from the sensing device. As
shown in Fig. 1, we believe the proposed system will support a
number of HCI applications that were previously infeasible, e.g.,
tracking two hands to play video games with a smartphone/TV and
tracking multiple close-by fingers to interact with a smart speaker.

In the literature, a lot of efforts have been devoted to enable multi-
target tracking using wireless signals, such as WiFi [14, 15, 47]
and radar/sonar signals [1, 4, 9, 20, 22]. However, these techniques
do not directly translate to acoustic-based multi-target tracking on
commodity devices, mainly due to the following reasons.

• Unlike OFDM-based WiFi signals that have multiple sub-carriers
at different frequencies, the frequency of chirp-based acoustic
signals changes linearly over time. This difference requires us to
redesign the signal separation algorithm to achieve multi-target
tracking with acoustic signals.

• Compared to WiFi or radar/sonar-based systems that usually track
moving objects with a velocity in the scale of meter or decime-
ter per second (e.g., human walking), this work aims to achieve
finer-grained velocity estimation in the scale of centimeter per
second (e.g., hand/finger movements). To achieve this level of ve-
locity estimation accuracy, data samples from a large time window
are required [11]. This introduces an interesting dilemma: a larger
time window is needed for more accurate estimation, but only a
single velocity estimate (i.e., average velocity) can be obtained.
On the other hand, many real-world objects (e.g., hands) rarely
move at constant velocities and an average velocity is not able to
precisely characterize the hand movement. Accurate estimation
of instantaneous velocity using acoustic signals has not been ad-
dressed, which creates unique technical challenges for our goal to
realize fine-grained hand/finger tracking.

• Another issue that is more prominent in acoustic tracking—when
compared to WiFi or radar/sonar-based tracking—is the range-
Doppler effect that yields a relatively large range estimation de-
viation [24]. For example, a chirp-based acoustic signal with a
start frequency of 𝑓0 = 16 𝑘𝐻𝑧, a bandwidth of 𝐵 = 4 𝑘𝐻𝑧, and a
sweep time of 𝑇 =0.04 𝑠, would induce a 47.1 𝐻𝑧 (i.e., Δ𝑓 = 2𝑣

𝑣𝑠
𝑓0,

where 𝑣𝑠 is the speed of sound in the air) Doppler shift for a target
moving at a velocity of 𝑣 =0.5𝑚/𝑠. This Doppler shift will cause
a deviation of 8 𝑐𝑚 (i.e., Δ𝑑 = 𝑣𝑓0𝑇

𝐵
) when estimating the distance

between the target and the sensing device. This is unacceptably
large for millimeter-level tracking that we envision in our study.

To realize our vision, we develop the first contactless Fine-grained
Multi-target Tracking system using acoustic signals, namely FM-
Track. We believe the proposed method could be generalized and
applied to other chirp-based signals (e.g., LoRa signals) to enable
fine-grained, multi-target sensing.
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Figure 2: Separate targets with information from multiple di-
mensions (range 𝑟 , angle 𝜃 and velocity 𝑣): (a) targets with simi-
lar 𝑟 can be separated by different 𝜃 ; (b) targets with similar 𝜃
can be separated by different 𝑟 ; (c) targets with similar 𝑟 and 𝜃
can be separated by different 𝑣 .

We first propose a chirp-based signal model to fuse the range (time
domain), velocity (frequency domain), and angle (spatial domain)
information of targets from reflected signals that can be collectively
used to characterize the location and motion status of the targets,
as shown in Fig. 2. Based on the signal model, we introduce an
algorithm that can efficiently resolve each individual signal reflected
from multiple targets based on joint parameter (range, angle, velocity
and attenuation) estimation.

To address the instantaneous velocity and range-Doppler effect
issues, we propose a novel method based on the fact that the informa-
tion estimated from multiple dimensions are not equally accurate. In
acoustic tracking, range estimation is much more accurate than the
other dimensions (i.e., angle and velocity) owing to the low propaga-
tion speed. Thus, we can employ the range estimates obtained from
two adjacent chirps to compute the instantaneous velocity. Once this
instantaneous velocity is obtained, the Doppler shift-caused range
deviation can be estimated and removed to refine the range estimate.

To track multiple targets, we need to continuously estimate the pa-
rameters of signals reflected by the targets. It is non-trivial to match
the parameters from two consecutive estimates for the same target.
Furthermore, there exists an intrinsic ambiguity issue in estimating
the velocity of a moving target using chirp signals [30]. To address
the above issues, we employ the fact that the target movement is
continuous in the spatial, time, and frequency domains.

We implement FM-Track on the Bela platform [36], connected
with one speaker and an array of four MEMS microphones [8]
for extensive experiments. Experiment results show that, for two-
target tracking, our system is able to achieve a median accuracy of
0.86 𝑐𝑚 and 0.11 𝑐𝑚 for absolute range and displacement estimates
respectively. FM-Track can successfully separate two targets with
a spacing as small as 1 𝑐𝑚, outperforming the state-of-the-arts. We
show that FM-Track can simultaneously track four targets within a
range of 3𝑚. For single-target tracking, the sensing range can be up
to 5𝑚. Finally, we implement FM-Track on the commercial off-the-
shelf (COTS) devices, i.e., a smartphone (iPhone 5c [3]) and a smart
speaker prototype (MiniDSP UMA-8-SP USB mic array [26]), to
demonstrate the feasibility and reliability of FM-Track with several
real-life interaction applications, including multi-hand tracking and
two-finger tracking.

2 PRELIMINARIES
Prior studies have focused mainly on single-target tracking, whereas
the proposed work herein aims to enable fine-grained multi-target

151



FM-Track: Pushing the Limits of Contactless Multi-target Tracking SenSys ’20, November 16–19, 2020, Virtual Event, Japan

tracking. In this section, before we present our design details, we
introduce the preliminaries related to our design.

2.1 Device-free vs. Device-based Tracking
Acoustic tracking can be broadly grouped into two categories: device-
based and device-free (contactless) tracking. While device-based
tracking tracks a device to indirectly track a target (e.g., hand),
device-free tracking employs signal reflections from the target to
directly track it. Take hand tracking as the example. For device-
based tracking [23, 41], we can track a smartphone hold in hand
to track the hand movement. On the other hand, for device-free
tracking [28, 45, 53], a smartphone can be placed on a table and
the built-in speaker and microphone are leveraged to transmit and
receive acoustic signals. As the user moves the hand near the smart-
phone, the hand movements can be directly tracked by analyzing the
acoustic signals reflected from the hand. Compared to device-based
tracking, the tracking range of device-free tracking is usually smaller
because the reflection signal is weaker. Furthermore, multi-target
tracking is particularly challenging for device-free tracking as sig-
nals reflected from different targets—that are superimposed at the
receiver—are difficult to be separated to track each individual target.

2.2 Multidimensional Information
Each target can be exclusively characterized by its location and
motion status with information from three dimensions: time (range),
space (angle), and frequency (velocity).
Range information (𝑟 ): The range—i.e., the distance between the
target and the sensing device—can be obtained by measuring the
propagation time of the reflected acoustic signal and multiplying
it with the signal propagation speed. Fundamentally, the resolution
of the range estimation is determined by the signal frequency band-
width [41, 47]. A larger bandwidth yields a more accurate estimation
of signal propagation time and thus more accurate range estimation.
Angle information (𝜃 ): The Angle-of-Arrival (AoA) information
represents the direction of acoustic signals arriving at the micro-
phone array. The number of microphones determines the resolution
of the AoA estimates [48]. More microphones could generate a
narrower AoA beam width, resulting in a higher angular resolution.
Velocity information (𝑣): When a target is moving, the signal re-
flected from the target experiences a frequency shift, which is termed
as Doppler shift. This Doppler shift value can be used to calculate
the velocity of the moving target. The resolution of Doppler shift is
related to the length of the observation time window [11]. A larger
window size leads to a finer resolution of the Doppler shift, and thus
more accurate velocity estimation.

We can exploit information from multiple dimensions to distin-
guish multiple targets, as illustrated in Fig. 2. When two targets have
similar range values, the AoA information can be leveraged to distin-
guish them (Fig. 2a). Similarly, two targets that share similar angles
can be distinguished by their range information (Fig. 2b). Even when
two targets share both similar range and AoA values, they could still
be distinguished by tracing their velocities [47] (Fig. 2c).

2.3 Tracking Accuracy vs. Resolvability
The majority of prior efforts in contactless acoustic tracking have fo-
cused on improving the tracking accuracy for a single target [28, 34,

𝑫 = 𝟖 𝒄𝒎 𝑫 = 𝟐 𝒄𝒎

Figure 3: An illustrative example demonstrating that two tar-
gets become unresolvable when the range difference between
them 𝐷 is smaller than the range resolution (Δ𝑟 = 4.25 𝑐𝑚).

45, 53], whereas relatively little attention has been paid to improve
the resolvability to distinguish multiple targets. For applications
involving a single target, the tracking accuracy should serve as the
primary evaluation metric. However, for application involving mul-
tiple targets, both the tracking accuracy and resolvability (i.e., the
capability to resolve multiple targets) must be considered. Without
loss of generality, we consider a bandwidth of 𝐵 = 4 𝑘𝐻𝑧, which
yields a range resolution of Δ𝑟 =

𝑣𝑠
2𝐵 =

340𝑚/𝑠
2×4 𝑘𝐻𝑧

= 4.25 𝑐𝑚, where
the factor 2 accounts for the fact that the reflected signal traverses
the path back and forth. Consider an example where two targets
are separated with a distance of 𝐷 as shown in Fig. 3. When the
distance (𝐷 =8 𝑐𝑚) between two targets is larger than the resolution
(Δ𝑟 = 4.25 𝑐𝑚), we can clearly see two peaks, indicating that these
two targets are resolvable. However, when the distance between two
targets decreases to 2 𝑐𝑚, which is smaller than Δ𝑟 , two signal peaks
merge into one, and the two targets become unresolvable. This exam-
ple clearly demonstrates that a coarse resolvability could negatively
affect the tracking accuracy, and thus, both the tracking accuracy
and resolvability are important metrics in multi-target tracking.

2.4 Relative Tracking vs. Absolute Tracking
Recent efforts have pushed the granularity of contactless acoustic
tracking to millimeter level [28, 34, 45, 53]. The underlying mecha-
nism of these tracking methods is to measure the fine-grained phase
change. For instance, a phase change of 40° in the acoustic signal
with a wavelength of 2 𝑐𝑚 (16 𝑘𝐻𝑧) corresponds to a range change
of 2 𝑐𝑚×40°

2×360° =1.1𝑚𝑚. Unfortunately, this millimeter-level accuracy
is only possible when estimating changes of the target position (i.e.,
relative tracking) without accounting for where exactly the target
is located with respect to the sensing device. The estimate of the
absolute distance between the target and the sensing device (i.e.,
absolute tracking) is much coarser, because its accuracy depends on
the bandwidth of the acoustic signals. In theory, with a 4 𝑘𝐻𝑧 band-
width, the absolute tracking accuracy is around 4.25 𝑐𝑚. Wang et al.
have reported a relative tracking accuracy of 0.35 𝑐𝑚 and an absolute
tracking accuracy of 3.57 𝑐𝑚 [45], matching our analysis herein.

3 A MATHEMATICAL SIGNAL MODEL
This section describes a detailed mathematical derivation of our
chirp-based signal modeling that is fundamental to our algorithm
designs to track multiple targets. This signal model enables our
algorithms to simultaneously extract the range, velocity, and angle
information of multiple targets from the reflected signals, which
allows us to fully characterize the targets’ location and motion status.

As shown in Fig. 4, the core idea behind chirp-based acoustic
tracking is to compute the Time-of-Flight (ToF) of the chirp signal
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Figure 4: The range information can be computed from one
ToF. (a) The velocity information can be estimated by ToF dif-
ferences over chirps; (b) the angle information can be estimated
by ToF differences over microphones.

transmitted from a speaker by comparing it with its delayed sig-
nal reflected by the target. The range information (i.e., the distance
between the sensing device and the target) can be estimated by mul-
tiplying half of the ToF with the sound speed in the air. The velocity
information of target movement can be estimated by measuring the
ToF differences across multiple chirps (Fig. 4a). In addition, we
can estimate the angle information (i.e., angle of the target location
with respect to the sensing device) by measuring the ToF differences
across multiple microphones (Fig. 4b). Without loss of generality, we
present our signal model by assuming a uniform linear microphone
array. The proposed methods can be applied to other microphone
arrangements, such as a uniform circular array used in smart speak-
ers [39]. In the evaluation (Sec. 7), we present results for both linear
and circular microphone arrays.

3.1 Signal Model for a Single Target
We first explain how the transmitted and reflected signals are pro-
cessed to derive the ToF of a single target. As shown in Fig. 4a, the
speaker transmits a sequence of chirp signals and each transmitted
chirp can be represented as

𝑆𝑇 (𝑡) = cos
(
2𝜋

(
𝑓0𝑡 +

𝐵

2𝑇
𝑡2
) )
, (1)

where 𝑓0, 𝐵, and 𝑇 represent the start frequency, frequency band-
width, and duration of the chirp, respectively. For a chirp signal, the
signal reflected from a target to the receiver (i.e., a microphone) is a
delayed version of the transmitted signal that can be represented as

𝑆𝑅 (𝑡) = 𝛼 cos
(
2𝜋

(
𝑓0 (𝑡 − 𝜏) +

𝐵

2𝑇
(𝑡 − 𝜏)2

) )
+𝑊 (𝑡), (2)

where 𝛼 is the signal amplitude attenuation factor, 𝜏 is the ToF
and𝑊 (𝑡) is the Gaussian white noise. For simplicity, we omit the
Gaussian white noise in the following equations.

Fig. 5 summarizes the process to compute the ToF from the
received signal. The received signal is multiplied by the transmit-
ted signal 𝑆𝑇 (𝑡) and its 90-degree phase-shifted version 𝑆𝑇

′ (𝑡) =
sin

(
2𝜋 (𝑓0𝑡 + 𝐵

2𝑇 𝑡
2)
)

to derive the In-Phase (𝐼 ) and Quadrature (𝑄)
parts of the mixed signal respectively. Specifically, after applying
the product-to-sum identity (i.e., cos𝐴 · cos𝐵 = 1

2
(
cos(𝐴 − 𝐵) +

cos(𝐴 + 𝐵)
)
) and a low-pass filter, the In-Phase part of the mixed

Low-pass Filter

𝑆𝑅(𝑡)

𝑆𝐼(𝑡)

𝑆𝑄(𝑡)

𝑆𝑀(𝑡)

𝑆𝑇(𝑡) In-Phase part

Band-pass Filter

𝑆𝑇
′
(𝑡) Quadrature part

Low-pass Filter

Figure 5: The mixed signal 𝑆𝑀 (𝑡) can be constructed from the
In-phase part 𝑆𝐼 (𝑡) and Quadrature part 𝑆𝑄 (𝑡).

signal becomes

𝑆𝐼 (𝑡) = 1
2
𝛼 cos

(
2𝜋

(
𝑓0𝜏 +

𝐵

𝑇
𝑡𝜏 − 𝐵

2𝑇
𝜏2
) )

≈ 1
2
𝛼 cos

(
2𝜋

(
𝑓0 +

𝐵

𝑇
𝑡
)
𝜏

)
.

(3)

The approximation above is based on the fact that 𝐵
2𝑇 𝜏

2 is two orders
of magnitude smaller than 𝑓0𝜏 due to a very small 𝜏 value.1 Similarly,
the Quadrature part can be approximated as

𝑆𝑄 (𝑡) ≈ 1
2
𝛼 sin

(
2𝜋

(
𝑓0 +

𝐵

𝑇
𝑡
)
𝜏

)
. (4)

By combining the obtained 𝐼 and 𝑄 components, we obtain the
mixed signal as

𝑆𝑀 (𝑡) = 𝑆𝐼 (𝑡) + 𝑗𝑆𝑄 (𝑡) = 1
2
𝛼𝑒 𝑗2𝜋 (𝑓0+

𝐵
𝑇
𝑡 )𝜏 . (5)

The obtained ToF information could be analyzed to extract the
range, velocity, and angle information of the target. Consider a target
whose distance with respect to the first microphone of the array is
denoted as 𝑟 . The ToF of the signal received by this microphone can
be computed as the round-trip distance divided by the signal speed in
air 𝑣𝑠 , i.e., 2𝑟

𝑣𝑠
. Suppose that the target is moving at a radial velocity of

𝑣 , where the velocity is positive when the target moves away from the
microphone array and negative when the target moves closer. During
the time period from the first chirp to the 𝑐 th chirp, the target moves
an extra distance of (𝑐 − 1)𝑇𝑣 , and this extra amount of movement
would cause an additional round-trip time of 2(𝑐−1)𝑇 𝑣

𝑣𝑠
. For the 𝑘 th

microphone, as shown in Fig. 4b, the ToF of the received signal
would experience an extra propagation time of (𝑘−1)𝑑 cos𝜃

𝑣𝑠
compared

to the first microphone, where 𝑑 and 𝜃 are the distance between
two adjacent microphones and the signal Angle-of-Arrival (AoA),2

respectively. Therefore, the ToF 𝜏𝑐,𝑘 of the signal received at the 𝑘 th

microphone for the 𝑐 th chirp can be computed as

𝜏𝑐,𝑘 =
2𝑟
𝑣𝑠

+ 2(𝑐 − 1)𝑇𝑣
𝑣𝑠

+ (𝑘 − 1)𝑑 cos𝜃
𝑣𝑠

. (6)

Note that the velocity 𝑣 represents the average target movement
velocity over multiple chirps. By substituting Equation (6) into
Equation (5), our model for the mixed signal can be represented as

𝑆𝑀 (𝑡𝑖 , 𝑐, 𝑘) =
1
2
𝛼𝑒 𝑗𝜑 (𝑡𝑖 ,𝑐,𝑘)

=
1
2
𝛼𝑒

𝑗2𝜋 (𝑓0+ 𝐵
𝑇
𝑡𝑖 ) ( 2𝑟𝑣𝑠 +

2(𝑐−1)𝑇 𝑣

𝑣𝑠
+ (𝑘−1)𝑑 cos𝜃

𝑣𝑠
)
,

(7)

1Even for a large distance of 3𝑚, the time-of-flight 𝜏 is just 0.0176 𝑠 .
2The target does not have to be in the same horizontal plane as the speaker/microphones.
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(c) The AoA-range profile.
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Figure 6: Comparison between pseudo-joint and joint estimation. (a)
Pseudo-joint estimation works well when two signals have different
strengths; (b) pseudo-joint fails for signals with comparable strength;
(c) joint estimation works well in this scenario.

(c) The AoA-range profile.
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(a) The AoA profile. (b) The AoA profile. (a) Before Back-Subtract. (b) After Back-Subtract.
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Figure 7: The AoA-range profiles before and after back-
ground subtraction (Back-Subtract): the reflections from
two hands and body stand out after background subtrac-
tion as shown in (b).

where 𝑡𝑖 is the 𝑖 th sampling timestamp and 𝜑 (𝑡𝑖 , 𝑐, 𝑘) is the phase
change induced by the 𝑘 th microphone in the 𝑐 th chirp at the 𝑖 th

sampling timestamp. Equation (7) contains information relevant to
range, angle, and velocity of the target, which can be rearranged to
simplify the notation as

𝑆𝑀 (𝑡𝑖 , 𝑐, 𝑘 ;𝒑) =
1
2
𝛼 · 𝑅 · Θ ·𝑉 , (8)

where 𝑅 corresponds to the component related to range, Θ corre-
sponds to the component related to angle, and 𝑉 corresponds to the
component related to velocity. These three components are repre-
sented as

𝑅 = 𝑒 𝑗𝜑𝑟 = 𝑒
𝑗2𝜋 (𝑓0+ 𝐵

𝑇
𝑡𝑖 ) 2𝑟

𝑣𝑠

Θ = 𝑒 𝑗𝜑𝜃 = 𝑒
𝑗2𝜋 (𝑓0+ 𝐵

𝑇
𝑡𝑖 ) (𝑘−1)𝑑 cos𝜃

𝑣𝑠

𝑉 = 𝑒 𝑗𝜑𝑣 = 𝑒
𝑗2𝜋 (𝑓0+ 𝐵

𝑇
𝑡𝑖 ) 2(𝑐−1)𝑇 𝑣

𝑣𝑠 .

(9)

In Equation (8), we have four unknown parameters, which are the
angle 𝜃 , range 𝑟 , velocity 𝑣 , and the signal attenuation 𝛼 . We denote
these parameters as a parameter vector 𝒑 = [𝜃, 𝑟, 𝑣, 𝛼], which char-
acterizes the location and motion status of one target. 𝑅, Θ and𝑉 are
the steering vectors for range, angle, and velocity, respectively [16].

The above-stated chirp-based acoustic signal model in Equa-
tion (8) is, to the best of our knowledge, the first attempt to simulta-
neously extract the target’s range, angle, and velocity information.
This model uniquely supports the chirp-based signals, as opposed
to the state-of-the-art model proposed for WiFi signals [47]. As
we can observe from Equation (9), all three steering vectors in the
signal model are time-varying, whereas those in WiFi-based models
are time-invariant, which makes it difficult to apply the techniques
used in WiFi tracking to acoustic tracking. Specifically, in WiFi-
based models, the range information can be estimated from a single
time-domain sample, since one time-domain OFDM WiFi sample
contains information of the entire frequency band (64 sub-carriers).
On the other hand, the chirp-based model requires a series of samples
across one chirp, because one time-domain sample only contains
information of a single frequency.

3.2 Signal Model for Multiple Targets
The signal model for a single target in Equation (8) can be extended
to multiple targets. In the presence of 𝐿 targets, the mixed signal at
the 𝑘 th microphone for the 𝑐 th chirp can be viewed as a superposition

of signals from 𝐿 targets

𝑆 (𝑡𝑖 , 𝑐, 𝑘) =
𝐿∑
𝑙=1

𝑆𝑀
𝑙
(𝑡𝑖 , 𝑐, 𝑘 ;𝒑𝑙 ) . (10)

The ultimate goal of our tracking algorithm—as we will present
in Sec. 4—is to separate the mixed signals reflected from multiple
targets and estimate the corresponding parameters 𝒑𝑙 = [𝜃𝑙 , 𝑟𝑙 , 𝑣𝑙 , 𝛼𝑙 ]
for each individual signal. From the parameters, we can obtain the
location and motion information of each target.

4 RESOLVING MULTIPLE TARGETS
This section describes how FM-Track enables multi-target track-
ing. The proposed algorithms provide an unprecedented opportunity
to improve the signal resolvability (i.e., the minimum distance be-
tween two closely located targets which the reflected signals can
still be resolved) by leveraging a novel approach to enable joint
estimation of the range, angle and velocity. Before presenting our
algorithms in-depth, we briefly discuss why the joint estimation al-
gorithms designed for WiFi-based [47] and radar-based multi-target
tracking [4, 10] cannot be effectively used for acoustic signals.

4.1 Discussion on Joint Estimation
One major issue rooted in multi-dimensional joint estimation is the
high computational complexity [10, 47]. The computational cost
increases exponentially with the increasing number of information
dimensions. To avoid a high computational cost, mD-Track [47]
develops a pseudo-joint estimation, which estimates the parameters
on each dimension sequentially. It is noteworthy that, if the previ-
ously estimated parameter is inaccurate, the accuracy of the current
parameter estimation is also affected. The basic idea of mD-Track
is to iterate the process of estimating the strongest signal while
considering the rest of the signals as noise. A key assumption for
this approach to work well is that, in each iteration, there exists
one signal with the prominent signal strength compared to other
signals, which does not hold true when two targets are very close
to each other (e.g., two hands or fingers). To illustrate this issue,
we conduct the following experiment. We first place two finger-
sized cardboards (Target 1 and 2) at [0.32𝑚, 70°] and [0.44𝑚, 90°],
respectively. Because they have different ranges from the sensing
device, the signal reflected from Target 1 is much stronger than
that from Target 2. In this scenario, mD-Track would provide an

154



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Dong Li, Jialin Liu, Sunghoon Ivan Lee, and Jie Xiong

accurate result, as shown in Fig. 6a. Now we replace Target 2 with
a larger cardboard Target 3. Due to its larger size, the strength of
its reflected signal is now comparable to that of Target 1, and the
above-mentioned assumption does not hold anymore. We can now
observe the estimated angle significantly deviates from the ground
truth in Fig. 6b.

Fortunately, joint estimation can effectively address the issue of
interference among signals with comparable strengths. As shown in
Fig. 6c, with an additional dimension (i.e., range), two signals can be
clearly distinguished even though the angles are close to each other.
Traditional radar-based tracking systems employ the MUSIC [32]
algorithm to perform joint estimation, which contains two computa-
tionally expensive steps: eigenvalue decomposition [25] and joint
optimal parameter searching [10]. In this work, we design a light-
weight joint estimation algorithm (Sec. 4.2) integrated with several
computation-saving techniques (Sec. 4.3). From our experiments,
the median run time of the proposed 3D (i.e., range, velocity, and
angle) joint estimation algorithm is only 0.0255 𝑠 for a single target,
while that of the traditional MUSIC 3D is around 195 𝑠 [10].

4.2 Separating Signals from Multiple Targets
This section presents a detailed description of our estimation algo-
rithm, which is designed based on the characteristics of chirp-based
signals. We first present how to jointly estimate the parameters for a
single target and then expand the algorithm for multiple targets.

4.2.1 Background Multipath Subtraction. Before estimating
the multi-dimensional parameters, we first remove the background
multipath, including the direct path from the speaker to microphones
and reflections from static surroundings. As shown in Fig. 7a, the
reflections from a human target (body and hands) are overwhelmed
by the background multipath, which would significantly decrease
the tracking accuracy. Therefore, we first measure the background
signal when there is no target and remove it later [24, 27]. After
subtracting the background multipath, the reflected signals from the
hands and the body clearly stand out, as shown in Fig. 7b.

4.2.2 Single Path Estimation. Assuming there is only one signal,
the estimation process can be decomposed into three steps: 1) con-
structing the joint estimator; 2) searching the optimal parameters for
AoA, range, and velocity; and 3) computing the signal attenuation.

Overview of the joint estimator for all parameters. For each
signal sample received by the 𝑘 th microphone in the 𝑐 th chirp at the
𝑖 th sampling timestamp, the signal is modeled by the attenuation
factor 𝛼 and the phase change 𝜑 (𝑡𝑖 , 𝑐, 𝑘) = 𝜑𝑟 +𝜑𝜃 +𝜑𝑣 induced by the
range 𝑟 , AoA 𝜃 , and velocity 𝑣 respectively, as shown in Equation (7).
For simplicity, we generically use a symbol 𝜑 to represent 𝜑 (𝑡𝑖 , 𝑐, 𝑘)
hereafter. The key idea for our joint estimator is that, if 𝜃 , 𝑟 , and 𝑣
are correctly estimated, the phase change computed based on the
estimated parameters (i.e., 𝜑) and the measured value of the actual
phase change (i.e., 𝜑𝑚) will be approximately equal

𝜑𝑚 = 𝜑𝑟 + 𝜑𝜃 + 𝜑𝑣 . (11)

If we remove these accurately estimated phase changes (𝜑𝑟 , 𝜑𝜃 , 𝜑𝑣)
from the measured phase across each sample, a signal with a phase
value of 0 (i.e., 1

2𝛼𝑒
𝑗0) is resulted. This implies that the phase-

removed signals will be in-phase and combined constructively, and
thus, the strength of the superposed signal is maximized.

Constructing the joint estimator. Suppose that a chirp contains
𝑁 samples, and a total number of 𝐶 chirps is included for one
round of estimate. At each sample index 𝑖, we have signal samples
from 𝐾 microphones. Then, we can represent the signal samples as
Σ= [Σ1 Σ2 · · · Σ𝑁 ], where each Σ𝑖 , 𝑖 ∈ [1, 𝑁 ] is a matrix of size
𝐾 ×𝐶. For each possible AoA 𝜃 , velocity 𝑣 , and range 𝑟 , the phase
change induced by them could be removed from Σ𝑖 by multiplying
the conjugates of their steering vectors defined in Equation (9):

E𝑖 (𝜃, 𝑣, 𝑟 ) = Θ∗
𝑖 (𝜃 )Σ𝑖𝑉

∗
𝑖 (𝑣)𝑅

∗
𝑖 (𝑟 ), (12)

where (·)∗ is the conjugate operation, Θ𝑖 (𝜃 ) is a 1×𝐾 vector,𝑉𝑖 (𝑣) is
a𝐶×1 vector, and 𝑅𝑖 (𝑟 ) is a scalar. Θ𝑖 (𝜃 ),𝑉𝑖 (𝑣) and 𝑅𝑖 (𝑟 ) correspond
to the steering vectors of Θ(𝜃 ), 𝑉 (𝑣), and 𝑅(𝑟 ) respectively, for the
𝑖 th sample. After eliminating the phase change on each dimension
for each sample, we obtain the joint estimator by summing all these
phase-removed samples together

E(𝜃, 𝑣, 𝑟 ) =
𝑁∑
𝑖=1

E𝑖 (𝜃, 𝑣, 𝑟 ) . (13)

Searching for the optimal parameters. The output of our joint
estimator E(𝜃, 𝑣, 𝑟 ) will be maximized at the optimal parameters 𝜃 , 𝑣 ,
and 𝑟 , because all signals are in-phase and combined constructively.
Hence, the optimization problem can be formulated as

(𝜃, 𝑣, 𝑟 ) = argmax
𝜃,𝑣,𝑟

∥E(𝜃, 𝑣, 𝑟 )∥2 . (14)

The search range of the parameters can be defined based on the ap-
plication. For hand/finger motion tracking, we can define the search
range of these parameters according to the physical constraints of
hand/finger movement. Then, we perform a search over the three
dimensions to find the optimal parameters. We present our schemes
to reduce the computational cost in Sec. 4.3.

Computing the attenuation factor 𝛼 . After obtaining the es-
timates for all three parameters (𝜃, 𝑣, 𝑟 ), we then calculate 𝛼 by
substituting those estimates into Equation (7)

𝛼 =
2

𝐶 · 𝐾 · 𝑁 E(𝜃, 𝑣, 𝑟 ) . (15)

The final outcomes of the above-mentioned algorithm represent
all dimensions of path parameters associated with one target. It is
noteworthy that the proposed algorithm can be flexibly configured
to support lower dimensions. For example, although a smartphone
with only one microphone cannot support the spatial dimension (i.e.,
angle information), the proposed algorithm can be configured to
leverage the velocity and range dimensions for multi-target tracking.

4.2.3 Multiple Signal Estimation. The proposed algorithm to
estimate parameters for one signal could be extended to work for
multiple signals. The algorithm is first applied to estimate the param-
eters 𝜃 , 𝑣 , 𝑟 , and 𝛼 for the strongest signal among the mixed signals.
Then, we reconstruct the strongest signal based on Equation (7) and
subtract this estimated signal from the mixed signal. Then, the algo-
rithm is again applied to estimate the next strongest signal until the
power of the residual signal is smaller than a pre-defined threshold.
Fig. 8 demonstrates the process of estimating parameters for three
signals reflected from three targets, namely 𝑆1, 𝑆2, and 𝑆3.
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(b) Reconstructed 𝑆1.
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(f) Reconstructed 𝑆3.

Figure 8: An illustrative example of reconstruction and subtraction for signals reflected from three targets.

4.2.4 More Iterations. The estimated parameters could be further
improved by iterating the above-mentioned algorithms. The major
source of the error emerges from the inaccurate determination of
background noise when the algorithm sequentially estimates the
parameters for each target. For example, when the algorithm first
identifies the strongest signal in the mixed signals, it considers the
residual signals (i.e., mixed signals subtracted by the strongest sig-
nal) as the background noise. In contrast, the residual signals are
actually composed of the weaker reflected signals from other targets
and the (actual) background noise. Fortunately, the ultimate resid-
ual signal after all the targets are identified could more accurately
represent the actual background noise. Thus, we iterate the entire
signal estimation algorithm by adopting the estimated noise from the
previous iteration to represent the background noise in the current
iteration. This iterative process is repeated until the identified pa-
rameters for all targets in the current iteration do not differ from the
previous iteration by a pre-defined threshold. The average number
of iterations in our experiment is quite small (i.e., 2.3 iterations).

4.3 Reducing Computational Cost
The high computational cost associated with joint estimation makes
it challenging to support real-time tracking. Considering 𝐾 mi-
crophones, 𝐶 chirps, and 𝑁 samples within each chirp, the com-
putational cost of a single execution of the estimator is O(𝜂) =

O(𝑛𝜃 · 𝑛𝑣 · 𝑛𝑟 · 𝐾 ·𝐶 · 𝑁 ), where 𝑛𝜃 , 𝑛𝑣 and 𝑛𝑟 are the numbers of
searching steps for the three parameters, respectively. If we further
assume we have 𝐿 paths and 𝑁𝑖𝑡𝑒𝑟 iterations, the computational cost
becomes O(𝑁𝑖𝑡𝑒𝑟 · 𝐿 · 𝑛𝜃 · 𝑛𝑣 · 𝑛𝑟 · 𝐾 ·𝐶 · 𝑁 ).

Reducing the size of search window. From the above analysis,
the number of search steps is a key factor affecting the computational
cost and is determined by the size of search window and the search
step size. Due to the relatively slow speed of human hand/finger
movements, small search windows for all three dimensions suffice.
Take hand tracking as an example, we empirically choose a search
window of 60 𝑐𝑚 for range and 60° for AoA. The search window
for velocity is from −60 𝑐𝑚/𝑠 to 60 𝑐𝑚/𝑠. For finger tracking, we
can use even smaller search windows. The search step sizes can be
chosen to balance the desired accuracy and computational efficiency.

Subsampling signal samples in time domain. The number of
samples (𝑁 ) in each chirp is two orders of magnitude larger than the
number of microphones (𝐾) and the number of chirps (𝐶). Therefore,
to improve the computational efficiency, we choose to subsample
the mixed signal 𝑆𝑀 defined in Equation (7) in the time domain by a
factor of 𝐷 . There is a trade-off between reducing the computational
cost and maintaining a high accuracy. That is, choosing a large 𝐷
can reduce the computation cost, but also decreases the number of

(a) Multiple peaks.

+

+ Previous estimate Peaks after compensation

(b) Picking out the target peak.  

+

Target peak Target peak

Peaks before compensation

Figure 9: Velocity ambiguity: (a) there exists one target peak
and multiple ambiguous peaks; (b) identifying the target peak
by matching the previous estimate (red plus) with the peaks af-
ter compensation (yellow crosses).

samples in estimating parameters, thus degrading the accuracy. We
empirically set 𝐷 =40 based on the trade-off analysis.

Accurate starting position estimate. An accurate starting posi-
tion estimate can significantly reduce the computational cost. The
range estimate of the starting position is particularly accurate for
acoustic signals due to the relatively slow propagation speed in air.
Also at the beginning, targets usually initiate movements from a
static position (i.e., velocity is 0). In this case, we can perform esti-
mation with information from two dimensions (i.e., range and AoA)
rather than three dimensions to quickly obtain the starting positions
of targets.3 Then we immediately switch to 3-dimensional estima-
tion and limit the search space by applying the continuity property
of the target movement. Note that users can perform a simple yet
unique initial gesture (e.g., push the hand twice) to differentiate the
targets from the interferers [24].

5 MULTI-TARGET TRACKING
This section first introduces how to deal with the velocity ambigu-
ity issue, followed by matching two consecutive estimates for the
same target. At last, we propose a novel method to compute the
instantaneous velocity and compensate the range-Doppler effect.

5.1 Dealing with Velocity Ambiguity
There is an intrinsic ambiguity issue in estimating the velocity of
a moving target using chirp-based signals [30]. Specifically, there
exist multiple peaks, including the target peak and several ambiguous
peaks, as shown in Fig. 9a. Due to noise and multipath, the peak
with the largest amplitude may not correspond to the target peak,

3Two-dimensional estimation takes just a few milliseconds as shown in Sec. 7.4.
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(a) Matching using 1D parameters. (b) Matching using 2D parameters.  
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Figure 10: Signal-target matching for signals 𝑆1 and 𝑆2: (a) it
is hard to match signals using only range information, (b) but
much easier using both range and angle information.

making it difficult to identify the target peak by amplitude. We
propose to apply the continuity property among adjacent estimates
to identify the target peak. The basic idea is that within a short
period of time (one chirp period is 40𝑚𝑠), the velocity and range
variations are small. Thus we can include the estimate from the
previous round to help identify the target peak in the current round
by choosing the peak that has the smallest distance from the previous
estimate. However, this approach may not work effectively due to
the range-Doppler deviation induced by the target movement. We
thus first compensate the raw peak estimates to remove the range
deviation before we apply the continuity property. In Fig. 9a, without
compensation, two peaks have similar distances to the previous
round estimate (marked as a red plus). After compensating the range-
Doppler effect (detailed in Sec. 5.3), the compensated target peak
(marked as a yellow cross) is much closer to the previous estimate
compared to the other two ambiguity peaks, as shown in Fig. 9b.

5.2 Matching Signals with Targets
To track moving targets, we need to continuously estimate the pa-
rameters of signals from these targets. At each timestamp, our joint
estimator outputs a collection of parameters for multiple targets.
Then, one challenge naturally appears: how to associate the pa-
rameter estimates for the same target at different timestamps? The
problem becomes particularly challenging when multiple targets
have overlapping trajectories. The key idea of our signal-to-target
matching solution is that the target movement is continuous (particu-
larly for human movements), and thus, the parameters between two
consecutive estimates from the same target should not differ by a
large magnitude. However, when two targets have overlapping tra-
jectories, the parameters of the two targets become similar, causing
confusion in tracking, as shown in Fig. 10a. We propose to employ
parameters from more dimensions to address this issue, because it is
unlikely multiple targets have similar parameters in all dimensions at
a given timestamp. For example, Fig. 10b shows that the ambiguity
in Fig. 10a could be resolved in higher dimensional space (i.e., 2D
space of range and AoA). To quantify the overlap in the trajectories
of different targets, we use a weighted L1-norm

4∑
𝑖=1

𝜷 [𝑖] ·
���𝒑𝑡 [𝑖] − 𝒑𝑡−1 [𝑖]

���, (16)

where 𝒑𝑡 = [𝜃𝑡 , 𝑟𝑡 , 𝑣𝑡 , 𝛼𝑡 ] represents the parameter estimate at time
𝑡 , and 𝑖 ∈ [1, 4] represents the index for the four parameters. 𝜷 is a
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Figure 11: Experiment setup.

scale vector that normalizes the value ranges of the four parameters
into the same scale, which can be determined in advance. The pair
of two consecutive estimates with minimum L1 distance is chosen
as the best match for each signal. However, this approach requires a
computation cost of O(𝑛!) for 𝑛 signals to search the optimal pairs.
We thus employ the Hungarian algorithm [14, 19] to reduce the
computational complexity from O(𝑛!) to polynomial time.

5.3 Refining Parameter Estimates
It is well-known that the chirp-based methods have difficulties in
obtaining accurate instantaneous velocity [11]. If the instantaneous
velocity of a moving target could be estimated for each chirp, we
can achieve a more fine-grained estimation of the motion status of a
moving target. In this section, we introduce a novel method to obtain
instantaneous velocity by exploiting the fact that the information
estimated from multiple dimensions are not equally accurate. Specif-
ically, we capitalize on the range estimates, which is more accurate
compared to other estimates due to the low propagation speed of
acoustic signals, to estimate the instantaneous velocity. Once the
instantaneous velocity is obtained, we can refine the range deviation
with a more accurate instantaneous velocity.

When the target is stationary, the estimated range 𝑟1 has no de-
viation. At the next timestamp when the target starts to move, the
target’s location is changed and thus, the estimated range 𝑟2 is de-
viated due to the range-Doppler effect [24]. Compared with the
range estimate 𝑟1 in the previous timestamp, the new range esti-
mate 𝑟2 can be expressed by adding the target displacement 𝑣𝑇 and
also the deviation caused by the non-zero target velocity 𝑣𝑓0𝑇

𝐵
to

𝑟1: 𝑟2=𝑟1 + 𝑣𝑇 + 𝑣𝑓0𝑇
𝐵

, where 𝑣 is the velocity of the moving target.
Since both 𝑟1 and 𝑟2 can be obtained from range estimates, we can
derive the velocity 𝑣 from the above equation. Because velocity 𝑣 is
obtained using two range estimates from two adjacent chirps (i.e.,
40𝑚𝑠 apart), we can consider it as the instantaneous velocity. With
the instantaneous velocity, we can calculate the movement-caused
range deviation and remove the deviation from the range estimate.

6 IMPLEMENTATION
We implement FM-Track on both the research-purpose Bela plat-
form [36] and COTS devices. The signals are analyzed in the MAT-
LAB environment using a laptop equipped with an Intel i7 processor.

Bela platform: The Bela platform [36] is widely used for re-
search involving acoustic signals owing to its ability to flexibly sup-
port different numbers and locations of microphones and speakers.
The Bela hardware is connected with one general-purpose EARISE
AL-202 speaker [7] to transmit acoustic signals and an array of
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(a) MUSIC 1D (𝑟 ). (b) MUSIC 2D (𝑟+𝜃 ). (c) FM-Track 2D (𝑟+𝜃 ). (d) mD-Track 3D (𝑟+𝜃+𝑣).
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(e) FM-Track 3D (𝑟+𝜃+𝑣).

Figure 12: Resolvability comparison among different approaches. 1D, 2D, and 3D represent the number of information dimensions
adopted in parameter estimation. The color indicates the probability of resolving two targets: red indicates fully resolvable and blue
means non-resolvable. The algorithm with the smaller blue area can achieve better resolvability.

up-to four SparkFun ADMP401 MEMS microphones [8] to receive
acoustic signals. The device components are shown in Fig. 11a.

COTS devices: Without loss of generality, we adopt iPhone
5c [3] to verify the effectiveness of FM-Track. To simplify the
process of development, the system is implemented based on the
existing framework LibAS [40], which allows us to develop our sens-
ing algorithm using MATLAB on the laptop without considering
the smartphone-specific details. We further implement our system
on a smart speaker prototype (i.e., MiniDSP UMA-8-SP USB mic
array [26]), which is equipped with seven Knowles SPH1668LM4H
microphones. This prototype has the identical layout and the same
sensitivity as Amazon Echo Dot [2], a widely used smart speaker.

Acoustic signals: The default chirp signals adopted in our im-
plementation lie in the inaudible frequency band from 18 𝑘𝐻𝑧 to
22 𝑘𝐻𝑧 with a chirp duration of 40𝑚𝑠. The sampling rate of the Bela
platform and COTS devices are 44.1 𝑘𝐻𝑧 and 48 𝑘𝐻𝑧, respectively.

Robots: To enable controlled experiments with a target moving at
a specific velocity and following a pre-defined trajectory, we mount
cardboards on two different types of robots as shown in Fig. 11b: 1)
Cozmo [37] that can be controlled at a speed granularity of 1𝑚𝑚/𝑠
with a maximum speed of 20 𝑐𝑚/𝑠 and 2) 4WD Hercules Robot [38]
with a speed granularity of 2 𝑐𝑚/𝑠 and a maximum speed of 2𝑚/𝑠.

Ground truth measurements: As shown in Fig. 11c, we employ
an optoelectronic motion capture system (i.e., Qualisys [13]) that
supports sub-𝑚𝑚-level multi-target motion tracking with a frame
rate of 250 𝐻𝑧 to obtain the ground truths of the target movements.

7 EVALUATION
We comprehensively evaluate the performance of FM-Track with the
Bela platform by varying the parameters under different conditions.
For experiments involving movements, we mount the targets on
mobile robots to precisely control their movements. We further
conduct a series of field studies by tracking hands and fingers using
the Bela platform to demonstrate the feasibility of FM-Track in real-
life scenarios. In addition, we showcase two interaction applications
using a smartphone and a smart speaker. Unless otherwise specified,
we apply three-dimensional information (i.e., FM-Track 3D) to track
two targets using four microphones and four chirps with a bandwidth
of 4 𝑘𝐻𝑧. Each experiment is repeated 20 times.

Evaluation metrics: We report both resolvability and tracking
accuracy in our evaluation. For resolvability, we compute the prob-
ability that two targets are resolvable in a total of 20 experiments.
On the other hand, we quantify the tracking accuracy using four

different metrics: absolute range error, absolute AoA error, relative
range (displacement) error, and position error. The absolute range
error is the difference between the estimated and ground truth dis-
tance between the target and the sensing device. Similarly, we define
the absolute AoA error. Unless otherwise specified, we employ the
absolute range and AoA error to quantify the tracking performance.
We also present the relative range error, which is defined as the
difference between the estimated and ground truth displacements. In
the end, we convert the range-AoA position into the Cartesian (X-Y)
coordinate and define a new metric, i.e., position error. The position
error is the Euclidean distance between the estimated position and
ground truth measured by the motion capture system.

7.1 Overall Performance
In this section, to manifest the performance of FM-Track, we com-
pare the capability of resolving multiple targets, as well as the track-
ing accuracy between FM-Track and the state-of-the-art approaches,
such as mD-Track [47] and MUSIC [18, 23, 32]. The system pro-
posed by Mao et al. leveraged 2D MUSIC to estimate the range and
AoA, and compensated the range-Doppler effect using a Recurrent
Neural Network (RNN) [24]. Because we do not have their data
set to train the RNN, we emulate their performance by performing
estimation using 2D-MUSIC and compensating the range-Doppler
effect using the ground-truth instantaneous velocity captured by the
motion capture system for a fair comparison.

Capability of resolving multiple targets. The key to enabling
multi-target tracking is the capability of separating signals reflected
from different targets. We demonstrate that FM-Track outperforms
prior studies in resolving signals from two close-by targets. We
perform experiments by varying the range, AoA, and velocity dif-
ference between two finger-sized cardboards. The range difference
is varied from 0 to 8 𝑐𝑚 at a step size of 1 𝑐𝑚, AoA from 0° to 40°
at a step size of 5°, and velocity from 0 to 5 𝑐𝑚/𝑠 at a step size of
1 𝑐𝑚/𝑠. Specifically, we vary the starting positions of the two targets
to provide different ranges and AoAs. To have different velocities,
we keep one target static and control the velocity of the other target
with the help of the robots. As presented in Sec. 2.3, when two
signals are too close to each other, they will not be resolved as two
separate signals but only one merged signal. Fig. 12 depicts the
resolvability comparison among different approaches. Specifically,
cooler (blue) colors indicate “non-resolvable” and warmer (red) col-
ors denote “resolvable”. Thus, smaller blue regions indicate better
resolvability performance. We observe that, with information from
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Figure 13: Absolute range and AoA error. Figure 14: Relative range error. Figure 15: Impact of target numbers.

Figure 16: Impact of angle difference. Figure 17: Impact of target size. Figure 18: Impact of different ranges.

three dimensions (i.e., range, velocity and AoA), FM-Track 3D can
resolve signals reflected by two targets as close as 1 𝑐𝑚, outperform-
ing the state-of-the-art mD-Track 3D by 200%. This granularity is
fine enough to track two close-by fingers.

Tracking accuracy. We compare the tracking accuracy of FM-
Track with two state-of-the-art systems. We mount two pieces of
finger-sized cardboard on two robots, one of which is kept stationary
at position [0.30𝑚, 70°]. We make the second robot move towards
the sensing device from the initial position at [0.38𝑚, 70°]. We also
vary the initial position of the second target by changing the angle
from 70° to 90° at a step size of 5°. For each movement, we vary
the robot’s maximum speed from 5 𝑐𝑚/𝑠 to 20 𝑐𝑚/𝑠 at a step size of
5 𝑐𝑚/𝑠. For a fair comparison, we compensate the range deviation
for other approaches using the ground truth instantaneous velocity.

Absolute range and AoA accuracy. Fig. 13 shows the absolute
tracking errors for range and AoA, respectively. The median range
error for FM-Track 3D4 is 0.86 𝑐𝑚, outperforming mD-Track 3D
by approximately 100%. The median AoA errors achieved by FM-
Track 3D and mD-Track 3D are 1.82° and 2.45°, respectively. The
proposed system outperforms mD-Track 3D mainly due to its capa-
bility of resolving signals with comparable strengths. These results
indicate that the increased number of dimensionality can improve
not only the resolvability but also the accuracy of estimation in each
individual dimension.

Relative range (displacement) accuracy. We compare the relative
range errors of different systems in Fig. 14. The median relative
range error for FM-Track 3D is as small as 0.11 𝑐𝑚, outperforming
mD-Track 3D and MUSIC 2D by 160% and 220%, respectively.
Note that the relative range error is much smaller than the absolute
range error depicted in Fig. 13, which supports our discussion of
relative vs. absolute ranges in Sec. 2.4. Our system is able to achieve
millimeter tracking accuracy for both relative and absolute ranges.

7.2 Factors Affecting the Performance
In this section, we evaluate different factors affecting the capability
to resolve multiple targets and the overall tracking accuracy.

Impact of number of microphones, number of chirps, and
bandwidth size. We increase the number of microphones from two

43D indicates that information from 3 dimensions is utilized for tracking.

to four. With more microphones, we can improve the resolution
of AoA estimation, thereby achieving higher overall resolvability.
Owning to high dimensionality, even with just two microphones,
the achieved range resolvability is as small as 3 𝑐𝑚, which means
two close-by targets separated by just 3 𝑐𝑚 could still be resolved
and accurately tracked. With four microphones, the resolvability
is further improved to 1 𝑐𝑚. Similarly, with more chirps, we can
improve the resolution of velocity and obtain higher overall resolv-
ability. However, when we increase the number of chirps beyond
four, the improvement is only marginal. We further study the im-
pact by varying the bandwidth size from 2 𝑘𝐻𝑧 to 6 𝑘𝐻𝑧. With a
larger bandwidth, we can improve the resolution of range and thus,
achieve better resolvability. Interestingly, the improvement is mar-
ginal when we increase the bandwidth beyond 4 𝑘𝐻𝑧. The above
results collectively show that we can improve the resolvability of
multiple targets by either improving the resolution of each single
dimension or increasing the dimensionality (number of dimensions)
of the signals. Due to protocol limit (e.g., a fixed bandwidth size), it
is more convenient to increase the number of dimensions.

Impact of number of targets. We employ finger-sized card-
boards as targets and mount each cardboard on a Cozmo robot.
We increase the number of targets from one to four. For more than
two targets, one robot is kept stationary and the rest move at different
velocities. Fig. 15 depicts the absolute range and AoA errors for
different numbers of targets. We observe that increasing the number
of targets also increases the errors. However, even with four targets,
FM-Track can still achieve an accuracy of 1.52 𝑐𝑚 and 2.5° for range
and AoA estimation, respectively.

Impact of angle difference between two targets. We evaluate
the performance of FM-Track when the angle difference between
two targets becomes small. As shown in Fig. 16, when the angles
of the two targets become similar, both the range and AoA errors
increase mainly because the interference between them becomes
more severe. However, even when the angle difference between two
targets is approaching 0°, which means the two small targets are
located side by side, the median range error and AoA error are still
acceptably small (i.e., 1.3 𝑐𝑚 and 3.2°).

Impact of target size. We evaluate the impact of target size by
adopting hand-sized, fist-sized and finger-sized cardboards as targets
respectively. As we can observe from Fig. 17, the tracking accuracy
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Figure 19: Impact of ambient noises. Figure 20: Parameter refinement.

(a) Range error. (b) AoA error.
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Figure 21: Starting position error.

Table 1: Processing time for each component (unit:𝑚𝑠).

Pre-processing
Parameter
estimation

Signal-target
matching

Parameter
refinement Total

13.4 25.5 1.8 0.2 40.9

is higher when the target size gets larger. The reason is that stronger
signals are reflected from targets of larger sizes and result in higher
Signal-to-Noise Ratio (SNR). Therefore, higher tracking accuracy
can be achieved. However, we do notice that when the target size
reaches a threshold, the performance improvement gets saturated.
This threshold varies with target material and target-device distance.

Impact of different ranges. To enable long-range multi-target
tracking, we adopt the idea of middle chirps proposed in RTrack [24].
Fig. 18 shows the performance of tracking two hand-sized targets
at varying distances. We can observe that the performance degrades
as the distance between targets and sensing device increases, which
is expected due to the lower SNR. When the target is 3𝑚 away, the
range error increases to around 4 𝑐𝑚. Note that the displacement
error is much smaller which is 0.82 𝑐𝑚. In fact, we can still track the
target when the target is 5𝑚 away, but the median tracking accuracy
increases to around 8 𝑐𝑚.

Impact of ambient noises. We evaluate the tracking performance
under different ambient noises. Two types of noises (i.e., talk and
music) are considered, and two different volume levels are tested
for each noise. The noise source is placed 0.5 𝑚 away from the
sensing device. Fig. 19 shows the tracking accuracies for five dif-
ferent scenarios where Q represents sensing with no created noise,
T represents sensing with people talking, and M represents sensing
with MUSIC playing. We found that the achieved accuracies are
very similar which means the ambient noise has little effect on the
sensing performance. It is not surprising since the frequency we
adopt in FM-Track is much higher than that of the ambient noises.

Effectiveness of parameter refinement. We demonstrate the
benefit of the parameter refinement method presented in Sec. 5.3.
We compare the results obtained with and without parameter refine-
ment. More specifically, we have two refinement schemes: 1) re-
finement with the instantaneous velocity proposed in FM-Track and
2) refinement with the traditional average velocity. As shown in
Fig. 20, we can clearly observe that FM-Track achieves much better
performance compared to the other two methods.

7.3 Starting Position Estimation
An accurate estimation of the starting position of the target is critical
for the tracking afterwards. Many existing studies only track the
relative motion of the target without knowing its starting position.
In this section, we evaluate the accuracy of the starting position
estimate. We assume the target has zero velocity at the start position.
We evaluate the performance by varying the range and AoA of the

Table 2: Comparison of parameter estimation time (unit:𝑚𝑠).

Dimensions MUSIC mD-Track FM-Track
1D 17.5 1.1 1.2
2D 520 2.3 4.7
3D 195000.2 3.9 25.5

target (a hand-sized cardboard) with respect to the sensing device.
The range is increased from 0.2 𝑚 to 3 𝑚 at a step size of 0.4 𝑚,
and the AoA is varied from 60° to 120° at a step size of 10°. Fig. 21
shows the starting position estimation accuracy at different positions
after background subtraction. The median accuracy for the range and
AoA are 1.48 𝑐𝑚 and 2.91°, respectively. We observe that the perfor-
mance degrades when the target moves out of the above-mentioned
sector region. The sector width depends on the frequency-dependent
radiation pattern of the speaker [12].

7.4 System Latency
Table 1 shows the processing time of each component in FM-Track for
tracking one target. The end-to-end latency is around 40.9𝑚𝑠 (i.e.,
a maximum update rate of 24.4 𝐻𝑧), which is similar to the latest
work [24]. Even for four targets, the total end-to-end latency is
130𝑚𝑠, which is sufficiently short to support real-time tracking.

Comparison among different approaches. We set the search
step size for range, AoA, and velocity as 1 𝑐𝑚, 1°, and 2 𝑐𝑚/𝑠
respectively for all the approaches and evaluate the processing time
of parameter estimation. As shown in Table 2, FM-Track runs much
faster than MUSIC. Compared with mD-Track which adopts pseudo-
joint estimation, our processing time is slightly higher but still good
enough for real-time tracking.

7.5 Hand/Finger Tracking with Bela
Hand Tracking. We evaluate the performance of FM-Track in track-
ing hands. A volunteer was asked to sit 0.8𝑚 away from the acoustic
device. The volunteer was asked to draw different shapes and Arabic
numbers with her hands. Fig. 22a shows the range and position errors
for both one hand (single target) and two hands (multiple targets).
We observe that the position errors for one hand and two hands are
1.51 𝑐𝑚 and 2.65 𝑐𝑚, respectively. To visualize the performance, we
show two drawing samples using one hand and two hands in Fig. 23.

Finger Tracking. We also evaluate the performance of FM-
Track in finger tracking. Similar to hand tracking, a volunteer was
asked to draw shapes with the index finger on the horizontal plane.
Then, the volunteer was asked to use the two index fingers to simul-
taneously draw two shapes. We can see from Fig. 22b, with a very
small reflection area, the accuracies are still as high as 1.63 𝑐𝑚 and
3.94 𝑐𝑚 for one finger and two fingers, respectively. We show two
drawing samples using one finger and two fingers in Fig. 24.
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(a) Hand tracking. (b) Finger tracking.

Figure 22: Real-life performance.

(a) Hand tracking. (b) Finger tracking.
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Figure 23: Hand drawing samples.
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Figure 24: Finger drawing samples.
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Figure 25: Two-hand tracking using the smartphone.

7.6 Hand/Finger Tracking with COTS Devices
Tracking two hands using a smartphone. We implement FM-
Track on iPhone 5c [3] with one pair of speaker/microphone to
transmit and receive acoustic signals for sensing. Note that, because
only one microphone is used here, spatial domain information is
not available, and thus, we only employ information from the other
two dimensions for sensing. This is a good example to show that
the proposed system can still track multiple targets without having
an array of microphones. A volunteer was asked to sit in front of
the smartphone and move both her hands. Fig. 25 shows two snap-
shots of the obtained range-velocity profiles. With just one speaker
and one microphone, we can clearly track the two hands. Another
interesting observation is that even our objective is to track the two
hands, the human body is also clearly tracked as shown in Fig. 25.

Tracking two fingers using a smart speaker. We also imple-
ment FM-Track on a smart speaker prototype, i.e., UMA-8-SP USB
mic array [26], which is equipped with seven microphones. With
more microphones, smart speakers present a higher resolution in
spatial domain, and accordingly better overall sensing performance.
Fig. 26 shows the trajectories of the index finger and middle finger.
We can see that the two fingers can be clearly resolved and they
can be accurately tracked at an accuracy of 0.93 𝑐𝑚. We believe this
finger-level tracking granularity and multi-finger tracking capability
could enable new applications on commodity smart speakers.

8 RELATED WORK
Device-based acoustic tracking. Owing to its low propagation
speed, acoustic signals have been widely employed for motion track-
ing, where users are required to hold a device. AAMouse [52] tracks
a mobile device based on Doppler shift at multiple frequencies.
CAT [23] and Rabbit [25] employ distributed FMCW devices to
estimate the distance between the transmitter and receiver. Sound-
Trak [54] extracts the phase information from the sinusoidal waves
to track a customized finger ring with respect to a smartwatch in
3D space. MilliSonic [41] leverages the phase of the FMCW signal
to enable concurrent tracking of multiple mobile devices. All these
systems infer human motions by tracking the movement of devices.

Device-free (contactless) acoustic tracking. Many systems have
been developed to perform contactless tracking without requiring

(a) Setup.  (b) Finger trajectory.  

Markers

iPhone 5c

Smartphone
holder

Speaker

UMA-8-SP mic array
Markers

Figure 26: Two-finger tracking using the smart speaker.

users to carry a device. Efforts have pushed the granularity of track-
ing to a millimeter level. FingerIO [28] exploits the auto-correlation
properties of OFDM symbols to achieve𝑚𝑚-level tracking, while
LLAP [45], Strata [53] and the system proposed by Sun et al. [34]
track fine-grained movements by capturing the phase change of
signals. VSkin [35] tracks finger movements on the back of a smart-
phone by extracting the amplitude and phase information from
both structure-borne and air-borne acoustic signals. A recent work
RTrack [24] enables room-scale hand motion tracking by combining
a microphone array with a series of signal processing techniques
and an RNN. These studies have focused mainly on single-target,
whereas FM-Track aims to enable fine-grained multi-target tracking.

Contactless multi-target tracking. There have been a few at-
tempts to contactlessly track multiple targets using wireless sig-
nals [1, 9, 14, 20, 47]. For WiFi signals, WiDeo [14] and mD-Track
[47] propose to leverage information from multiple dimensions in-
cluding angle, ToF and Doppler shift, to isolate the superposed sig-
nals reflected from multiple targets. For radar/sonar signals, previous
work [1, 9, 20] leverage their inherent large bandwidths and antenna
arrays to support multi-target tracking. The above-mentioned multi-
target tracking systems focus on body-level human motion tracking,
whereas FM-Track targets at finer-grained hand and finger tracking.

9 CONCLUSION
This paper presents FM-Track, a novel acoustic-based system that
pushes the limits of contactless multi-target tracking. We demon-
strate, for the first time, an approach to accurately track multiple
finger-sized targets using acoustic signals and showcase its feasibil-
ity in real-life applications. To achieve this, we propose a chirp-based
signal model to fuse the angle, range, and velocity information of
signals reflected from multiple targets. We also propose solutions
to address the unique issues associated with chirp-based tracking,
such as velocity ambiguity and unavailability of instantaneous ve-
locity. We believe the proposed methods can benefit other work on
chirp-based tracking, such as LoRa and Radar.
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