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Abstract—Human identification is a prerequisite for many
personalized services in smart spaces. This paper presents RFree-
ID, the first unobtrusive RFID-based human identification system
irrespective of walking cofactors (e.g. appearance changes or
inconsistent walking paths). The key insight is that the RFID
reader and tags can serve as a radio gate, and the walking-
induced RF signal fluctuations from tags are capable of per-
ceiving different walking patterns when people cross this gate.
More importantly, spatially separated tags can provide abundant
temporal and spatial information for amplifying discrepancies
among people and minifying the influence of walking cofactors.
Therefore, after collecting phase fluctuations received from RFID
tags, RFree-ID identifies people by using a sequence of signal
processing techniques and a well-designed matching algorithm.
The system is implemented on COTS RFID devices, and extensive
experimental evaluation under various conditions validates the
high reliability and robustness of our system.

I. INTRODUCTION

Radio-based human sensing techniques have drawn signifi-
cant attention in recent years. Due to the merits of unobtrusive-
ness and privacy protection, they have fostered a wide range
of innovative applications such as localization [1], activity
recognition [2][3], and even vital signs monitoring [4], all
of which offer great potential to enhance the quality of our
work and life. However, without knowing the identities of
individuals, many of these applications would largely reduce
the user experience and even worse become infeasible in
realistic scenarios. For example, if activity recognition systems
cannot identify someone who is walking into a room, they fail
to further provide him/her with personalized services like TV
program recommendations. On the contrary, a system enabling
unobtrusive and reliable human identification will obviously
facilitate the applications of radio-based sensing.

Existing radio-based human identification systems [5][6]
have proven that gait can be regarded as a credible and
discriminative indicator for different people. These systems
leverage the detailed Channel State Information (CSI) of WiFi
signals to profile unique walking patterns. However, it is worth
noting that walking patterns are restricted by various walking
cofactors, such as appearance changes caused by carrying a
backpack or a briefcase and inconsistent walking paths. And
these pioneer works put strong constraints on the walking
pattern consistency between training processes and identifying
processes. More specifically, walking cofactors must remain
identical for one specific person among all processes due

to the sensitivity of wireless channel metrics to multipath
changes. Despite the fact that WiFi signals can provide rich
frequency diversity, fusing the CSI measurements on multiple
subcarriers still cannot effectively handle the variations of
walking cofactors [6]. The main problem is that all these
subcarriers share the same propagation paths, resulting in
indistinguishable discrepancies among them. One possible
solution is to offer spatial diversity by deploying several pairs
of transmitters and receivers. Since signals from each pair
possess their own propagation paths, they would experience
utterly different distortions when people walk. Motivated by
this, we turn our attention to the passive RFID technology
which can accomplish this goal by simply attaching an array of
inexpensive tags in the space. Apparently, the impacts exerted
by walking cofactors vary considerably across all tags, opening
up a new opportunity for gait-based human identification.

In this paper, we devise RFree-ID, a first-of-its-kind device-
free human identification system with Commercial Off-The-
Shelf (COTS) RFID products. Our vision is that RFree-ID
can reliably discern people irrespective of walking cofactors
when they walk along straight walkways (doors, corridors,
etc.). The key insight is that, the RFID reader and an array
of tags which are on either side of the walkway can serve
as a radio gate, and when people cross the gate, the fine-
grained phase information from RF signals is capable of
perceiving walking patterns. More importantly, phase profiles
from spatially separated tags can offer abundant temporal and
spatial information, which can definitely boost the precise
human identification. Although the rationale behind sounds
quite simple, some rigorous challenges require to be addressed.

First of all, even though there exists gait diversity in people,
the difference exhibited by phase profiles can be quite small
among some people, making them hard to be distinguished.
In addition, it is extremely difficult to guarantee that walking
patterns are always identical for one person in real scenarios
because any variations of walking cofactors will make a big
difference. The spatial diversity provided by RFID tags holds
potential to deal with the variations, but how to incorporate
the information across multiple tags is non-trivial. Although
many sophisticated RFID systems for activity recognition have
emerged recently, e.g. IDsense [7], ShopMiner [8] and FEMO
[9], they mainly focus on recognizing human object inter-
actions by perceiving movements of RFID tags attached on
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objects. Some other works [10][11] recognize human activities
by perceiving multipath changes. They also deploy multiple
tags in the environment to provide spatial diversity. However,
they assign equal weight to each tag, greatly limiting the
potential of multiple tags and making their systems vulner-
able to cofactors changes [11]. Moreover, the discrepancies
exhibited in phase profiles among walking people are far less
than those among different activities [12], and thus we need a
more elaborate algorithm to capture these discrepancies.

In this paper, we deploy an array of separated tags in the
space and explore the full potential of the spatial diversity in
human identification. On one hand, when different people walk
through the radio gate composed of the reader antenna and
tags, walking diversity can be accurately captured by this tag
array. Although, for some tags, phase fluctuations are almost
the same from one person to another, there are usually some
other tags fluctuating divergently among people. And RFree-
ID attempts to discern people by magnifying the influence
of those tags with high distinguishability. On the other hand,
this tag array can also mitigate the effect of various walking
cofactors. When a person walks with different cofactors, there
may exist some tags whose phase fluctuations remain almost
unchanged although those for other tags distort dramatically.
Thus, RFree-ID plans to relax the restriction of walking pattern
consistency by suppressing the impact of those most distorted
tags. To maximize the benefits provided by spatial diversity,
RFree-ID first quantifies the distinguishability and distortion
for each tag, and then proposes a Weighted Multi-dimensional
Dynamic Time Warping (WMD-DTW) algorithm to accurately
identify people irrespective of walking cofactors.

Recent advances in RFID, such as RFID light bulbs [13]
which integrate the reader into a smart lamp, prospectively
facilitate the deployment of our system, especially in home
settings. Furthermore, compared to WiFi-based systems which
require people to walk along a line for about 5m and are
susceptible to the changes of walking cofactors, our system
can effectively handle these variations while people just need
to cross the radio gate. Hence, we envision that RFree-ID
does apply to a wide range of applications. For example, we
can deploy our system on the door frame of each room in
a house to identify the person crossing the doors, enabling
personalized room-level applications and behavior analysis.
As for scenarios where RFID systems have already been
deployed, like warehouses and offices, we can reuse existing
infrastructures to identify and track employees unobtrusively.

In summary, our main contributions are as follows:
• To the best of our knowledge, this is the first attempt to

design an unobtrusive human identification system based
on COTS RFID devices. We have demonstrated that the
walking-induced phase profiles are abundant enough to
capture walking patterns for human identification.

• We conduct extensive experiments to validate the poten-
tial of the spatial diversity provided by spatially separated
RFID tags. Based on these experiments, we devise a
distinguishability estimator and a distortion estimator to
quantitatively appraise distinguishability and distortion

for each tag, respectively, and then apply a well-designed
WMD-DTW algorithm to accurately discern people by
amplifying discrepancies among them and minifying the
influence of walking cofactors.

• We implement RFree-ID and comprehensively evaluate
the performance in a typical office building under various
conditions. Experimental results show that RFree-ID can
achieve 97% identification accuracy with a group of 10
people under ideal situations where walking cofactors
remain unchanged, and 92.6% in a real world scenario
where people can freely change their walking cofactors.

The rest of the paper is organized as follows. We review
the related works in Section II and present an overview of the
system in Section III. Then we present the detailed design of
RFree-ID in Section IV and the system implementation and
performance evaluation in Section V. Finally, we conclude this
paper and propose the future work in Section VI.

II. RELATED WORK

This section reviews the related literature in RFID-based
sensing and gait identification techniques.

A. RFID-based sensing

RFID is normally considered as an enabling tool for auto-
matic identification of objects. Amazingly, recent research has
shown that the physical RF signal between RFID readers and
tags can be a powerful sensing modality for many applications.
Some works [14][15][16] leverage the signal phase to locate
RFID tags within high precision. Much attention has also
been paid on activity and gesture recognition, like shopping
behavior mining [8], exercise monitoring [9], falling detection
[10][11] and fluid intake recognition [17]. IDsense [7] detects
human object interactions by perceiving movements of tags
attached on everyday objects. Grfid [18] adopts a multiple-
tag method to realize a robust gesture recognition system.
PaperID [19] and Rio [20] turn RFID tags into input devices
by sensing signal changes. Different from the state-of-the-
art systems mentioned above, RFree-ID aims to unobtrusively
identify people by measuring gait diversity exhibited in low-
level RF phase information. We construct more distinctive
features and matching algorithms for human identification with
spatially separated tags.

B. Gait-based human identification

Gait-based human identification aims to discriminate indi-
viduals by the way they walk. Unlike other biometrics, gait
can be captured at a distance and without requiring the extra
cooperation from people. Camera-based approaches [21], [22]
use spatial-temporal silhouette analysis based on computer
vision to perform identification. Such methods highly depend
on lighting conditions and require line-of-sight as well as
suffer from privacy concerns. Wearable sensor-based methods
[23][24] employ inertial sensors embedded in mobile devices
to capture gait signature. Ambient sensor-based systems pro-
vide a non-intrusive way by exploiting the ambient information
including audio [25], pressure [26] and floor vibration [27]
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produced by walking while their further applications may be
hindered by the requirement of specialized devices and high
deployment cost.

Since human motions will cause multipath changes of
wireless signals, researchers have also utilized wireless signals
to identify people. Authors in [28] extract micro-Doppler
signature based on radar techniques to characterize the gait
pattern. RF-Capture [29] leverages the captured human figure
via FMCW radar to deliver human identification and gesture
recognition. A more promising alternative is to employ the
fine-grained Channel State Information (CSI) which has al-
ready been exposed by commodity WiFi cards for human iden-
tification [5][30][6][12]. However, these methods put strong
constraints on walking cofactors consistency, which does not
always hold in practice. Recent work Rapid [31] makes an
exploration to handle walking path inconsistency, but it still
does not consider other common walking cofactors in real-
life such as carrying a backpack. In comparison to these
WiFi-based methods, RFree-ID constructs more distinguish-
able walking-induced phase profiles and is robust to various
confounding factors. Furthermore, RFree-ID only needs people
to cross the radio gate, which is deployable to a wider range
of applications.

III. RFREE-ID OVERVIEW

In this section, we first briefly analyze the principle of gait-
based human identification with COTS RFID devices. Next,
two sets of preliminary experiments are performed to elaborate
on the benefits and necessities of spatial diversity provided by
multiple tags. Finally, we provide an overview of our system.

A. Principle

Present COTS RFID readers, such as Impinj Speedway
in our implementation, can report the low-level backscatter
signal characteristics such as RSSI, phase and Doppler shifts
[32]. Our system exploits the phase information for human
identification as it exhibits a more reliable and fine-grained
indicator of multipath changes than other metrics [18].

In most practical RFID setups, the integrated signal received
by the reader is the superposition of signals from the Line
of Sight (LOS) path and many other reflected paths due to
the multipath effect. When a person walks through a radio
gate composed of a reader and a tag, some propagation paths
remain invariant (static paths) while others change with human
movements (dynamic paths). The received signal of the reader
can hence be presented by:

s(t) = ss(t) + sd(t) = ss(t) +

N∑
k=1

ak(t)e
−j2πfτk (1)

where ss(t) and sd(t) denote the sum of time-varying signals
from static paths and dynamic paths, respectively. ak(t) is the
complex valued representation of attenuation and the initial
phase offset of the kth dynamic path. e−j2πfτk is the phase
shift on this path with a propagation delay of τk and f is the
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Fig. 1. The setup of RFree-ID
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Fig. 2. Profiles of spatially separated tags

carrier frequency. Then the received signal phase 6 s(t) can be
further derived as:

6 s(t) = arctan
|ss(t)| sin 6 ss(t) + |sd(t)| sin 6 sd(t)
|ss(t)| cos 6 ss(t) + |sd(t)| cos 6 sd(t)

(2)

where |·| and 6 · represent the amplitude and phase of the
corresponding signal, respectively.

Two significant inferences can be drawn from Eq. (1) and
Eq. (2). In order to facilitate the understanding, we ask a
volunteer to cross the gate (Fig. 1). The extracted phase
profiles are plot in Fig. 2. As the DC parts of the profiles have
been removed, a phase shift of 3rad means that the phase is
3rad larger than that without human motions.

The first inference is that the received phase 6 s(t) is highly
related to signals from walking-induced dynamic paths. Eq. (1)
indicates that changes in the length of any signal propagation
path lead to corresponding phase changes of the RF signal on
this path. In theory, a change of half a wavelength generates
a πrad phase shift. When the volunteer is approaching the
LOS path between the reader and tags, the length of the body-
reflected path will gradually decrease, resulting in a periodic
change (0 ∼ 2π) in the signal phase of this path. In addition,
the signal amplitude will also become larger owing to a shorter
path. Accordingly, we can infer from Eq. (2) that the combined
signal phase 6 s(t), which is a consequence of dynamic body-
reflected paths and static paths, will experience a gradually
increasing amplitude of oscillation. Similarly, 6 s(t) will ex-
perience a gradually decreasing amplitude of oscillation when
the person is moving away from the LOS path. It can be
observed that the result shown in Fig. 2 is very consistent with
our analysis. Since there exists gait diversity among people,
walking-induced dynamic signals must be different from one
person to another and thereby these phase fluctuations can be
regarded as a unique indicator for a specific person.

The second inference is that as walking-induced signals
from spatially separated tags travel along divergent paths,
phase fluctuations will also be different, which can be verified
by Fig. 2. This inspires us to construct more distinguishable
features for each individual with rich spatial diversity provided
by multiple tags.

It is noteworthy that the tag can still be read by the reader
when the LOS path is blocked due to the diffraction and the
multipath propagation of the RF signal, so the corresponding
signal phase will have a gradual change instead of a jump [33].
Moreover, the phase profiles fluctuate more prominently when
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Fig. 3. Phase profiles of different people
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Fig. 4. The maximum values of the phase profiles from 30 subjects

people are crossing or near the LOS path. During this short
period, the fluctuation is mainly generated by human bodies’
forward motions rather than their walking steps. Our extensive
experiments show that even for tags close to the ground, the
effect of the steps is negligible, indicating that our system is
resilient to the number of walking steps.

B. Spatial Diversity

As shown in Fig. 1, in order to generate spatial diversity for
RFree-ID, tags are spatially distributed in the vertical direction,
numbering 1 to 5 from the bottom to the top. Obviously,
the specific deployment of tags such as tag numbers and tag
intervals, are able to have a great influence on the system
performance, which will be detailedly discussed in Section
V. And we perform two sets of preliminary experiments to
illustrate the benefits and necessities of spatial diversity.

Compared with a single tag, intuitively, multiple tags can
capture the gait diversity engendered by different individuals
in a more precise way. In order to corroborate this intuition,
three subjects are asked to walk along a straight line between
a reader and a tag array in a corridor separately (5 tests
each one). The processed phase profiles of tag 3 and tag
5 for these three subjects are illustrated in Fig. 3(a) and
Fig. 3(b), respectively. We depict phase profiles of each test
on the figures for the sake of demonstrating their stability and
repeatability. As shown in Fig. 3(a), although phase profiles for
Subject 1 can be apparently separated from those for Subject 2
and 3, the discrepancy between Subject 2 and 3 is so small that
they cannot be differentiated by phase profiles only from this
tag. However, as we can observe from Fig. 3(b), the phase
profiles of these three subjects from tag 5 are discriminate
enough to tell them apart. For a better illustration, we collect
the phase profiles of 30 subjects and show the maximum
values of these profiles in Fig. 4. From the figure, we can
see that even though the maximum values of a certain tag
are close among some people, it is hard to find any two
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Fig. 5. Phase profiles with and without carrying a backpack

people whose maximums of phase profiles are close across all
tags. Apparently, the maximum as well as other standard time-
frequency features cannot completely characterize the unique
walking patterns, but Fig. 4 still shows the powerful potential
provided by spatially separated tags on boosting the walking
pattern distinguishability.

As mentioned before, superior to WiFi based human iden-
tification systems, RFree-ID has the ability to mitigate the
effect of walking cofactors. In order to expound how it works,
one subject is invited to walk with and without a backpack.
As shown in Fig. 5(a), the phase profiles of tag 1 under
these two conditions are almost identical, whereas those of
tag 3 in Fig. 5(b) are heavily distorted by the change of
walking cofactors, which indicates that the distortion caused
by walking cofactors can be effortlessly detected and further
diminished by our multiple-tag system.

From these experiments, we can draw an significant conclu-
sion that it would prospectively improve the distinguishability
among people as well as the robustness to the changes of
walking cofactors by employing phase profiles across multiple
spatially separated tags.

C. System Overview

RFree-ID consists of a RFID reader and an array of spatially
separated RFID tags, which can be deployed on either side of
a corridor or an entrance. Fig. 6 shows a general overview of
our system, containing 4 modules in total. After being filtered
by the Signal Preprocessing module, phase measurements
are passed through the Walking Detection module to extract
the data that contains walking events. Then extracted phase
profiles are further purified with Profile Extraction and Wavelet
Denoising. Finally, processed phase profiles are fed into the
core component called the Human Identification module. To
amplify the discrepancies among people and mitigate the
impact of walking cofactors, this module estimates the dis-
tinguishability and distortion for each tag, and then applies
Weighted Multi-Dimensional Dynamic Time Warping (WMD-
DTW) to compute the similarity of two walking profiles.
RFree-ID determines the identity of a person by searching
the one in the walking profile library which has the highest as
well as sufficient similarity with the testing profile.

IV. SYSTEM DESIGN

This section details four modules of RFree-ID, including
signal preprocessing, walking detection, feature extraction and
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human identification.

A. Signal Preprocessing

Phase Unwrapping The first step to process the raw phase
measurements is phase unwrapping. The reason is that the
signal phase reported by the reader is a periodic function
ranging from 0 to 2π, termed as wrapped phase [18]. We
adopt the method in [8] to unwrap the phase values, which
assumes that the absolute difference of two adjacent reading
phase values is smaller than π. This is reasonable given that
the frequency of human body moving is well below than that
of the reader interrogation.

Smoothing After phase unwrapping, RFree-ID applies the
Hampel identifier and a weighted moving average filter to
smooth the data. Then, the system removes the Direct Current
(DC) component of phase stream by subtracting the constant
offset which can be calculated via a long-term averaging
over the stream. At last, since tags reply unevenly spaced in
time domain, we adopt linear interpolation with 10ms apart
between consecutive values to process the phase stream.

B. Walking Detection

As shown in Fig. 6, the walking detection module consists
of two steps. The first one is to detect the occurrence of human
motions and extract the corresponding phase data. And the
second one is to figure out whether the motion is walking
based on the extracted data from the previous step.

Motion Detection Intuitively, phase values remain relatively
stable with no presence of human motions while noticeably
fluctuate otherwise. This inspires us to employ the Kullback-
Leibler divergence (KL-divergence) to detect potential human
motions [9]. We first segment the phase stream into frames
of 1s with 50% overlap and then calculate the KL-divergence
for each two consecutive frames. In the absence of human
motions, the value of KL-divergence is small due to the
stability of phase values. Conversely, the values become large
when a moving human appears. Thus, we can single out human

motion data by checking the value of KL-divergence. To avoid
missing meaningful phase data, we extract the motion data
aggressively which will be further refined in the next section.

Walking Recognition The goal of this stage is to separate
walk from other human motions. It is not hard to understand
that different human activities exhibit distinguishable pattern
in both time and frequency domain. And a set of light weight
features for each tag are computed from the extracted motion
data to characterize different activities, including 7 time-
domain features, i.e. mean, max, min, skewness, kurtosis,
variance, mean crossing rate and 3 frequency-domain features,
i.e. spectral entropy, band energy, the largest FFT peaks.
Afterwards, a decision tree classifier is adopted using these
features to determine whether the human motion is walking.

C. Feature Extraction

Once the system detects the occurrence of walking, the
human identification scheme will be triggered. However, the
extracted data are still coarse-grained and may contain parts
of meaningless phase samples. Hence, this step realizes a
more fine-grained extraction. As mentioned in Section III-A,
the amplitude of phase fluctuation will reach the maximum
when the person is crossing the LOS path. Based on this
insight, RFree-ID segments the extracted data into several
frames (0.1s with 50% overlap) and finds the frame with the
maximum average energy. The mid-point time of this frame is
considered as the moment that the person is crossing the LOS
path, denoted as tmid. The duration Tp of the walking phase
profiles is set to 2.4s via the trial-and-error method. Then the
phase data in [tmid− Tp

2 , tmid+
Tp

2 ] is extracted and delivered
to a wavelet filter. We apply 5-level ‘db4’ Discrete Wavelet
Transform (DWT) to denoise these profiles [34]. Finally,
RFree-ID constructs the walking profile for each individual
with the denoised phase profiles from spatially separated tags.

D. Human Identification

We adopt Dynamic Time Warping (DTW) to compute the
similarity between two phase profiles considering that people
may cross the gate at different speeds. We make two im-
provements on traditional DTW to speed up computation and
prevent unlimited stretch [35]. First, when generating the cost
matrix, RFree-ID applies a window constraint which means
only those elements around the diagonal line of the matrix are
calculated. Second, when calculating the distance between two
points, RFree-ID introduces a additional cost, called stretch
cost, which is proportional to their time difference.

As the walking profile of each individual consists of
multiple phase profiles from spatially separated tags, Multi-
Dimensional Dynamic Time Warping (MD-DTW) [34] easily
comes to mind, which can be formulated as follows:

d(P,Q) =
N∑
i=1

DTW (Pi, Qi) (3)

where Pi and Qi are the profiles from the ith tag, and N is the
number of the tags. However, this naive method considers that
all tags participate equally for human identification, limiting
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Fig. 7. PDF of DTW distance (a) tag 1; (b) tag 3; (c) tag 5

the full advantage of spatial diversity provided by multiple
tags. As mentioned before, there are two benefits obtained
from spatial diversity. The first one is that there exist some
tags whose phase profiles fluctuate divergently among people,
which means they exhibit more distinguishability than other
tags. And the second one is that phase profiles from some
tags almost remain invariant with different walking cofactors,
which indicates that they experience less distortion than other
tags. Undeniably, higher weights should be assigned to those
two kinds of tags. RFree-ID enables the weighting mechanism
via two estimators, i.e., distinguishability estimator and distor-
tion estimator, which are performed in the training process and
identifying process, respectively.

Distinguishability Estimator The distinguishability estima-
tion for each tag is performed in the training process. Given the
trained profiles of the target group, RFree-ID calculates two
types of DTW distance for each tag, the intra-class distance
and the inter-class distance. The former is the sum of the DTW
distance between any two phase profiles from the same person,
and the latter is the sum of that from two different persons.
It is intuitive that tag i is more discriminative when it has a
smaller intra-class distance and a larger inter-class distance.
Based on this insight, we determine the discriminative weight
of each tag as :

αi =

∑
k 6=l

∑
m,nDTW (Qk,mi , Ql,ni )∑

k

∑
m6=nDTW (Qk,mi , Qk,ni )

(4)

where Qk,mi is the mth profile of person k in the profile library.
After normalization, we get the global discriminative weight
of each tag. Besides, we also calculate the local discriminative
weight of each tag for any two persons in the group.

Distortion Estimator In the identifying process, given
the testing profile of tag i, Pi, RFree-ID first calculates
the DTW distance between Pi and every profiles in the
trained library. Then the mean value of the kth person’s
DTW distance with respect to tag i can be represented by
mean(DTW (Pi, Q

k,m
i )), where m = 1, 2, · · · ,M (M is the

number of training samples for every subject), and we also
have mean(DTW (Qk,mi , Qk,ni )), the mean value of the DTW
distance between any two tag i’s phase profiles of the kth
person in the profile library. The ratio of them is:

Rai =
mean(DTW (Pi, Q

k,m
i ))

mean(DTW (Qk,mi , Qk,ni ))(m6=n)
(5)

The intuition underlying our distortion estimation mecha-
nism is that higher Rai indicates the profile of this tag is less
reliable in human identification, in other words, Rai can be
used to quantify the distortion of tag i. We illustrate this idea
in Fig. 7. We select the profiles of Subject k with respect to
tag 1, tag 3 and tag 5. The blue line is the DTW distance PDF
(probability density function) of Subject k’s any two profiles in
the training library. For comparative analysis, we ask Subject
k to walk normally (just as in training phase) once again
and compute the DTW distance between the walking profile
collected this time and his profiles in the library. The red line is
the PDF. It can be observed that the DTW distance distribution
of three tags changes little. Then we ask Subject k to walk
carrying a backpack and the yellow line is the corresponding
PDF. We can see that the DTW distance distribution of tag 3
in this experiment is totally different from training data while
that of tag 1 and tag 5 remain stable, indicating that the profile
of tag 3 distorted much more seriously. It can be observed that
the value of Rai can well quantify this distortion. We assign a
dynamic weight for tag i according to the distortion estimation:

βi =
1
Rai∑N
i=1

1
Rai

(6)

WMD-DTW After the weight of each tag is calculated, we
get the Weighted MD-DTW distance:

d(P,Q) =
M∑
i=1

αi × βi ×DTW (Pi, Qi) (7)

where αi and βi are the global discriminative weight and
the dynamic weight of tag i, respectively. Given one testing
walking profile, RFree-ID calculates the WMD-DTW distance
between it and all labeled walking profiles in the profile library.
Then, the system selects the two people corresponding to the
top-2 smallest distance and recalculates the similarity using the
square of these two candidates’ local discriminative weights
instead of αi in Eq. (7). The person with the smaller distance
is determined as the final result. The reason why we use the
square of the weight is that our dynamic weighting mechanism
will mitigate the effect of various walking cofactors as well
as decrease the distinguishability between two people.

Note that if the smallest distance is larger than a threshold,
it is highly likely that the testing profile belongs to a stranger.
This paper primarily focuses on the identification of people
who has enrolled his/her walking profile in the training library,
and we leave stranger detection to our future work.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

Devices and Deployment We implement RFree-ID using
off-the-shelf RFID devices. The reader is Impinj Speedway
R420 reader equipped with a directional antenna (Laird S9028
with 9dBi gain). The tags are ALN-9740. We evaluate the
performance of RFree-ID in a typical office building, as Fig. 8
shows. The reader and tags are deployed on either side of a
corridor. The horizontal distance between them is 2m. The
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TABLE I
CONFUSION MATRIX OF WALKING DETECTION

classified as walking non-walking
walking 0.997 0.003

non-walking 0.004 0.996

reader antenna is 0.8m high, and the tags are uniformly
distributed in the vertical direction from 0.4m to 1.8m.

Data Collection We collect training and testing data from
30 volunteers for evaluation. These volunteers are 22 male
and 8 female university students with the age ranging from
21 to 25. We also record their weights (male: 56 ∼ 74kg;
female: 46 ∼ 52kg) and heights (male: 168 ∼ 184cm; female:
160 ∼ 167cm). To construct the walking profile library, we
instruct the subjects to walk normally (carrying no objects)
along a predefined path (Path1 in Fig. 8) for 50 times. As the
walking profile will change obviously when people walk in
the opposite direction, we collect profiles in both directions.

B. Walking Detection Accuracy

To evaluate the performance of our walking detection
scheme, we ask volunteers to perform non-walking activities
besides walking, i.e. walking around the sensing area, standing
in the sensing area making phone calls, walking towards the
LOS path and then walking back, sitting down and standing
up. Here, the sensing area refers to the area where people
inside can have pronounced effects on the received signal.
Table I shows the confusion matrix of the detection results.
As the fact that the confined space only allows limited human
activities, our scheme yields a nearly perfect accuracy.

C. System Performance in Normal Walking

In this section, we evaluate the performance of RFree-ID
when people walk normally along a predefined path. We use
the data in the profile library as testing profiles and acquire
the identification accuracy of each subject via Kf−fold cross
validation. The training set size and tag number is 20 and 5
by default, respectively, and we will investigate the impact of
these two parameters in Section V-G and V-H. Fig. 9 shows
the performance of RFree-ID under different target group
sizes. We observe that the identification accuracy of RFree-
ID decreases with the group size increasing. In particular, the

TABLE II
WALKING COFACTORS

Code Walking Cofactors Code Walking Cofactors
a carrying a backpack d clothes
b making a phone call e another walking path
c carrying a laptop f environmental change

accuracy of RFree-ID yields 99.6% when there are only two
subjects in the group, and decreases to 92.7% with the group
size of 30. When the size is 10, the average accuracy is 97.6%.
This accuracy is much higher than that of WiWho [5] (about
80% with 6 subjects) and WifiU [6] (92.31% with 10 subjects
and 40 training samples for each subject) which need people
to walk along a predefined path for about 5m.

D. System Resilience to Walking Cofactors Changes

In this section, we test the resilience of our system to
walking cofactors changes. The cofactors in our experiments
are listed in Table II. Specifically, we ask volunteers to
walk through the sensing area carrying a backpack filled
with a laptop, making a phone call, and carrying a laptop,
respectively (see Fig. 13). These three manners are very
common in home and office settings. It is noted that making
phone calls can also change walking patterns because the
arm with the phone does not swing as normal walking. As
clothes people wear can influence the signal propagation, we
also conduct experiments with people wearing winter clothes
(the training profiles are collected when people wear spring
clothes). In addition, to examine the impact of walking path
inconsistency, we ask volunteers to walk along Path2 and
Path3 as shown in Fig. 8. We further investigate the robustness
of our system to environmental changes by placing a desk
nearby and asking another subject to walk around the sensing
area. The target group size is 10, and each volunteer walks
for 40 times with each cofactor. Fig. 10 is the experimental
results. We compare our system with naive MD-DTW method
and single tag system. It can be clearly observed that our
system outperforms the other two methods significantly in
presence of these confounding factors. Specifically, the single
tag system yields very poor performance in these scenarios.
Naive MD-DTW method incorporates rich spatial diversity,
yet still degrades a lot with cofactor changes. In contrast, the
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performance of our system does not have obvious degradation
and still reaches a high average accuracy of 93.8%, only a
slight drop compared to 97.6% in normal walking. In addition,
our system is more robust than CSI-based methods when
cofactors change. In WifiU, the error rate increases from 10%
without cofactors changes to 25% with cofactors changes [6].
This is because our system exploits multiple tags to provide
both spatial and temporal walking information, and further
highlights the informative signal as well as dampens the noisy
signal via the weighting scheme.

E. System Performance in Realistic Scenarios

To further verify RFree-ID’s robustness to individuals’
walking pattern changes and applicability in real settings, we
perform evaluation in an uncontrolled scenario over a period
of three weeks. We deploy our system in the corridor near
our lab (as depicted in Fig. 8). As the volunteers participating
in the evaluation are students in our lab or other labs in this
floor, they walk through the corridor many times nearly every
day. To simulate the real world scenarios, we will not give
any instructions to them after we collect their training data
in normal walking. They can come to or leave their labs as
usual and they are free to change their walking pattern as
they want. We estimate the ground truth using the camera
installed on the ceiling and discard the data collected when
more than one person crosses the sensing area at the same
time. From the videos, we observe that subjects walk in
various patterns. Besides those mentioned above, they may

(a) (b) (c)

Fig. 13. (a) carrying a backpack; (b) making a phone call; (c) carrying a
laptop

walk through the sensing area looking down at the cellphone,
carrying a handbag, in a slow or fast speed, and with or without
arm swinging, etc. We collect 1213 walking profiles in total,
and more than 80 for each student. We use these walking
profiles as testing data and perform evaluation via naive
MD-DTW method and our WMD-DTW method, respectively.
Fig. 11 and Fig. 12 are the results. The average accuracy
is 84.3% and 92.6%, respectively. Specifically, naive MD-
DTW method is likely to misclassify subject 3 as subject 7
due to the small discrepancy between their phase profiles. In
contrast, our method reduces the misclassification rate from
18% to 7%. This is because we assign higher weights to tags
with high distinguishability and lower weights to those with
low distinguishability. In addition, subject 6 usually exhibits
a significantly different walking pattern (carrying a backpack
and with hands in pockets) compared to training process, so his
corresponding accuracy is only 73% when using naive MD-
DTW method. But our method can boost the accuracy to 86%
with the dynamic weighting mechanism. The result indicates
that our system has high applicability in real world scenarios.

F. Impact of NLOS

In this section, we study the impact of NLOS by placing the
reader antenna behind a 120mm hollow wall (the wall behind
the read antenna in Fig. 8). In this scenario, we collect training
samples of normal walking from 10 subjects and use these data
to perform cross validation. The average accuracy is 95.4%,
degrading little compared to LOS scenarios. The result shows
that our system works very well in NLOS conditions. This is
useful for the deployment in real world scenarios, because in
some settings, it may be inappropriate to deploy the reader
antenna in the corridor considering such factors as aesthetics,
space limitations, or security. Compared to the vision-based
techniques which can only work under LOS conditions, our
system provides more choice in deployment.

G. Impact of Training Set Size

In this section, we evaluate the impact of training set size
on the identification result. We consider 4 scenarios including
normal walking, carrying a backpack, walking along another
path and people moving around. The target group size is 10
(the remaining experiments are all 10). The results are shown
in Fig. 14. We observe that a larger training size results in a
better result and the performance improvement in latter three
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scenarios is more remarkable. This is expected because more
training instances can yield a more robust result. In addition,
our system can exert its superiority better with more samples
due to the weighting mechanism. When the size is 20, only
a slight performance degradation exists for the latter three
scenarios and the degradation almost disappears with a size
of 40. Considering the overhead in training and computational
load in testing, we set the size to 20 in our experiments. As
the accuracy still improves slowly with the size increasing over
20, we can choose a larger size in more noisy conditions.

H. Impact of the Number of Tags

As more tags can provide richer spatial and temporal phase
measurements for human identification, we study the impact
of the number of tags on the performance of our system. The
scenarios are the same as Section V-G. We vary the number of
tags from 1 to 7 and show the results in Fig. 15. We can see
a similar tendency with Fig. 14. The result strongly indicates
that our multiple-tag system can effectively mitigate the effect
of walking cofactor changes. RFree-ID finds a trade-off and
selects 5 tags in other experiments.

I. Impact of Devices Deployment

Tag deployment is crucial to the system performance since it
determines the capacity of tags for providing spatial diversity.
We deploy 5 tags uniformly in the vertical direction and per-
form experiments by varying their interval from 5cm to 35cm.
Fig. 16 shows the results. Obviously, the accuracy boosts
notably with the tag interval increasing, especially for noisy
walking (with cofactors variations). This is reasonable since a
larger tag interval brings richer spatial diversity. Conversely,
with a small interval, tags are more likely to experience
similar propagation paths just like multiple subcarriers of WiFi
signal or the compact antenna array of WiFi router. When the
interval is 35cm, the distribution range of tags in the vertical
direction is 0.4m ∼ 1.8m, which can cover the whole body
of almost everyone in our experiments and provide enough
spatial diversity. Thus, we set 35cm as the interval in other
experiments. In addition, we perform experiments when the
tags are distributed along the horizontal direction. Similarly,
due to the limited spatial diversity, the system performance is
much worse than that in the vertical direction.

We further investigate the impact of the horizontal distance
between the tag array and the reader antenna (T-R distance).
We vary the distance from 0.8m to 2.4m. Fig. 17 depicts the
results. We can observe that the accuracy of our system retains

high and stable with the distance varying, and can yield 94.6%
(normal walking) and 90.4% (noisy walking) even when the
distance is only 0.8m. As the duration of the extracted profiles
is only 2.4s (Section IV-C) and people’s walking speed is
about 1m/s in normal conditions, our system only need people
to walk along a straight line for about 2.5m. Actually, when
the T-R distance is 0.8m, a straight walkway longer than 1.6m
is enough. These evaluations allow us to deploy our system
to a wide range of application settings, such as a corridor, a
narrow or wide entrance in home or office settings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the feasibility of exploiting
walking-induced RFID signal to enable human identification.
We design and implement RFree-ID, an unobtrusive and low-
cost yet accurate human identification system with COTS
RFID devices. RFree-ID employs multiple spatially distributed
tags to obtain the spatial and temporal phase information,
and enables human identification via a sequence of signal
processing techniques and WMD-DTW algorithm. In contrast
to previous radio-based systems which are vulnerable to
walking cofactors changes, RFree-ID can effectively handle
these variations. Experimental results show that our system
is reliable and robust in various conditions. We envision that
our system can be an enabling tool for many personalized
services in smart buildings and can also effectively facilitate
the development of radio-based human sensing techniques.

Although the experimental results are promising, our system
still has some limitations. First, RFree-ID focuses on identi-
fying people who belong to the target group and does not
consider the detection of a stranger who is not in the group.
Actually, we can use a threshold of DTW distance to perform
stranger detection when the target group size is small (the
average accuracy is 93% with a target group of 5 subjects).
However, this method will not work well when the group
size becomes large. We may need other machine learning
methods to effectively handle this issue. Second, RFree-ID
fails to perform identification when there are multiple people
walking through the sensing area at the same time. This is
because multiple people will introduce more significant signal
propagation paths and our system cannot separate the phase
profile of one person from others. In future, we may need to
deploy more antennas and design more elaborate tag array to
perform human identification when there are multiple people.
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