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Abstract

Acoustic signal has been used to sense important contextual in-
formation of targets such as location and movement. This paper
explores its potential for measuring the geometric information of
moving targets, i.e., shape and size. We propose SONDAR, a novel
shape and size measurement system using Inverse Synthetic Aper-
ture Radar (ISAR) imaging on commodity devices. We first design
a Doppler-free echo alignment method to accurately align target
reflections even if there exists a severe Doppler effect. Then we
down-convert the received signals reflected from multiple scatter
points on the target and construct a modulated downchirp signal to
generate the image. We further develop a lightweight approach to
extract the geometric information from a 2-D frequency image. We
implement and evaluate a proof-of-concept system on both a Bela
platform and a smartphone. Extensive experiments show that we
can correctly estimate the target shape and achieve a millimeter-
level size measurement accuracy. Our system can achieve high
accuracies even when the target moves along a deviated trajectory,
at a relatively high speed, and under obstruction.
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1 Introduction

Understanding the geometry of objects is crucial across various
sectors, including supply chains, retail, industrial manufacturing,
and home automation. For example, in supply chains, knowing
the shape and size of items helps in detecting potential breakages
during transit, ensuring that goods reach customers intact. In retail,
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Figure 1: Two applications for SONDAR. (a) Identifying
whether the items inside the package are intact without open-
ing the package. (b) Size grading of fruits on a conveyor belt.

geometric data enhances computer vision systems, facilitating a
smoother and more transparent shopping experience for customers.
This knowledge allows businesses to streamline operations, reduce
errors, and improve customer satisfaction by accurately handling
products according to their dimensions.

Prior systems use LiDAR [17] and radar [9] to measure the tar-
get’s size and shape, but their high cost and complexity limit inte-
gration into low-cost devices. Other methods like cameras paired
with machine learning [10] raise privacy concerns and are less
effective in poor lighting conditions. Acoustic imaging provides
a promising alternative by using sound reflections to determine
the target geometry. This technique does not require a light source,
making it superior for low-light conditions. Unlike camera-based
and LiDAR systems that need a clear line of sight, acoustic imaging
can measure objects even when obstructed [23]. Moreover, acoustic
sensing achieves millimeter-level accuracy using low-cost devices,
making it suitable for widespread applications [4, 5, 15, 19, 24].

Acoustic sensing has primarily focused on extracting location
and motion information, such as distance [20], angle [16], and speed
of a target [18]. In this paper, we enhance the functionality of com-
modity acoustic devices to also determine the shape and size of
objects, broadening their utility across various real-world applica-
tions. For instance, as illustrated in Fig. 1, shape estimation can
identify breakages in fragile goods within supply chains without
requiring a visual inspection. Furthermore, precise size measure-
ments facilitate the sorting and grading of products like fruits on a
conveyor belt [2], enhancing efficiency in agricultural processing.

The concept behind acoustic-based shape and size measurement
involves generating a two-dimensional (2-D) image of a target from
its acoustic reflections. Typically, this is achieved using a large
array of speakers and microphones, similar to how ultrasound
imaging [36] visualizes tissue structures in medical applications.
However, standard acoustic devices often feature only a few speak-
ers and microphones, limiting their capability for detailed imaging.
One prior study, AIM, proposes to use a smartphone to perform
acoustic imaging by capturing reflections as the user manually
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moves the device along a set path [23], but this method is impracti-

cal for many applications where human involvement is not feasible.
We have developed a system named SONDAR that utilizes the

Inverse Synthetic Aperture Radar (ISAR) technique for acoustic
imaging without human intervention. In this system, when a target
moves (e.g., on a conveyor belt), a speaker emits chirp signals that
are reflected off the target from various positions. A microphone
captures these signals, allowing us to construct a 2-D image of
the target and extract detailed geometric information. Although
promising, there are several challenges to overcome in order to
implement an accurate size and shape measurement system:

o Acoustic sensing, compared to radar, is more vulnerable to detri-
mental impacts of the Doppler effect when the target is mov-
ing [16]. The Doppler effect introduces additional time delays in
received signals, disrupting echo alignment and compromising
image clarity. To overcome it, we have developed a solution that
effectively neutralizes Doppler-induced time delays to achieve
Doppler-free echo alignment. Our method starts by iteratively
estimating Doppler velocities for each received echo, capitaliz-
ing on the moment when there is no Doppler shift (i.e., zero
radial velocity) as the target passes directly by the device. With
these velocities, we create a modified chirp template that mirrors
the compressing or stretching in reflected chirp signals. This
allows for a precise cross-correlation between the tailored chirp
template and the received echoes, accurately eliminating the
additional time delays caused by the Doppler effect.

o ISAR-based imaging differentiates itself from other sensing sys-
tems by treating a moving target not as a single scatter point,
but as composed of multiple scatter points. In conventional radar
imaging, the typical approach that processes signals reflected by
these scatter points involves constructing a downchirp signal
with a sweeping frequency range large enough to capture all re-
flections during the dechirp process [6]. However, this approach
is impractical for acoustic imaging due to the limited bandwidth
and sampling rates of acoustic devices. To address this limitation,
we have developed a straightforward and effective method for
dechirping received echo signals. This involves down-converting
the received echoes from the ultrasonic band to the baseband and
then using a modulated downchirp signal for the dechirping pro-
cess. This adaptation allows for effective processing of acoustic
signals within the constraints of current device capabilities.

e To accurately extract geometric information from targets, it is
crucial to convert the generated image from frequency space
to physical space. This conversion involves scaling the pixel co-
ordinates of the frequency image by their respective frequency
resolutions. If the frequency resolutions are not appropriately
chosen, the resulting image in physical space may appear dis-
torted. The selection of these resolutions is particularly complex
as they depend on target motion parameters like angular velocity.
Traditional radar imaging systems typically assume a constant
angular velocity during the imaging process. This is a reasonable
assumption given the short 50 ms duration of radar imaging [6].
However, this assumption does not hold in acoustic imaging,
which requires a significantly longer duration of at least 2.5 s for
effective imaging. To address this issue, we propose a lightweight
method that maps the 2-D image from frequency space to physi-
cal space by mathematically defining the relationship between
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Table 1: Comparison with the SOTA studies.

Performance
Low-visibility NLOS Size & shape

Technology Implementation Low Low  Privacy

simplicity ~ cost power preservation environment target measurement

] Camera [8, 10, 21] v X X X X X 4
Light K

LiDAR [17, 25] X X X 4 X X 4
mmWave [11, 13] x v v v v v x
RF WiFi [34] x v X v v v x
RFID [33] x voox v v v X
Ultrasound [1] X X X v v v v
Acoustic Handheld SAR [23] 4 v /7 v v v x
Our method v v v v v v v

the frequency resolution and motion parameters of the target.
This approach ensures that the physical space representation of
the target is accurate and undistorted.

We have developed a proof-of-concept system using the Bela [29]
platform and a Samsung Galaxy S9+ smartphone and systemati-
cally evaluated its performance under different conditions. Our
contributions are summarized as follows:

o To our knowledge, SONDAR is the first system capable of mea-
suring the shape and size of moving targets using just a sin-
gle speaker and microphone pair on commodity devices. This
enhanced functionality has potential applications in logistics,
industrial manufacturing, security checks, and more.

We develop a Doppler-free echo alignment algorithm for acoustic
imaging, which can also be adapted to reduce the Doppler effect
in other acoustic sensing applications. Additionally, we introduce
a mapping technique that accurately transforms target images
from frequency space to physical space.

We implement and evaluate our proposed system using two com-
modity acoustic devices. Our extensive testing shows that the sys-
tem accurately estimates target shapes and achieves millimeter-
level measurement precision. It maintains high accuracy even
when targets deviate from a set trajectory, move at high speeds, or
are obstructed. We demonstrate the system’s practicality through
3 real-life applications: grading fruits by size, detecting breakages
in fragile items, and measuring box sizes.

2 Related Work

This section provides an overview of state-of-the-art (SOTA) stud-
ies, explaining our choice of acoustic signals for developing the
SONDAR system. We categorize existing technologies based on
the type of signals they use: light, RF, and acoustic. A comparative
analysis of these methods with our approach is presented in Table 1.

While camera-based methods can measure target shape and
size [8, 21], they struggle in low light conditions and raise privacy
concerns. Additionally, they are ineffective for non-line-of-sight
(NLOS) targets and require costly specialized equipment for opti-
mal functionality. LIDAR [17, 25] can accurately capture shape and
size through point clouds but shares similar limitations as camera-
based methods. RF-based solutions excel in detecting NLOS targets
but necessitate expensive hardware and extensive frequency band-
widths [11, 13, 33]. Ultrasound-based methods have been proposed
for measuring target size and shape, but they require bulky and
expensive equipment [1]. In contrast, a recent study utilizes readily
available, low-cost acoustic devices [23]. However, its approach
requires the device to move at a constant and low speed to mini-
mize Doppler effects, which is impractical in many scenarios. Our
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Figure 2: (a) The target’s actual motion can be decomposed
into three steps, i.e., (b) translation motion, (c) circular mo-
tion, and (d) rotation motion.

method effectively eliminates Doppler shifts and maintains high
accuracy even when the target moves at a relatively high speed.

Furthermore, most existing solutions [8, 10, 13, 14, 21, 27] rely on
deep learning techniques to achieve accurate results, necessitating
significant computational resources and extensive data inputs. In
contrast, our proposed system accurately measures the target’s
shape and size without relying on deep learning.

3 PRELIMINARIES

3.1 The principle of ISAR

Inverse Synthetic Aperture Radar (ISAR) is widely used in military
applications to determine the shape of moving targets like ships.
ISAR differs from other technologies like motion tracking by treat-
ing the target as a collection of multiple scatter points instead of
a single point. The principle behind ISAR imaging involves trans-
forming the target’s translational movement into rotational motion
to capture reflected signals from various angles around the target.

As illustrated in Fig. 2(a), consider a target moving from Posi-
tion 1 to Position 2. This movement can be broken down into three
steps, depicted in Fig. 2(b)-2(d). Initially, the target moves radially
from Position 1 to Position 3 (Fig. 2(b)), causing additional propaga-
tion delays for the signals reflected from each scatter point. These
delays can complicate image accuracy and are corrected through
our echo alignment technique. Next, the target moves along a circu-
lar path centered at the imaging device from Position 3 to Position
2 (Fig. 2(c)), which introduces no change in propagation delays and
thus does not affect the imaging outcome. Finally, the target rotates
around its geometric center by a specific angle (Fig. 2(d)), aligning
with the azimuth angle traversed in its actual movement.

3.2 The Basics of Chirp Signal

A speaker emits a series of chirp signals whose frequencies sweep
linearly over time, as depicted in Fig. 3(a). Each chirp’s frequency
spans from f; — g to fo + %, where f; is the carrier frequency and
B is the bandwidth. The duration of each chirp, T, is followed by
a pause, T, to ensure that all echoes from one chirp are received
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(a) The chirp signal. (b) The profile matrix.

Figure 3: The signal illustration for imaging.

before the next chirp begins. Each chirp can be represented as

s(t) =rect[%} cos (Zn(fct+§t2)), (1)

where k = T% is the slope of the chirp. The term rect|-] refers to
the rectangle window function, which is defined as

1 -1 £0.5
rect[~]:{ 0 :‘|_

()
Note that the total duration of the chirp and the gap interval is
T = T; + Te. The transmitted signal is reflected by the target and
then received by a microphone, which is often termed as an echo
signal. The time delay (A7) of the echo signal is usually computed
by performing correlation between the transmitted chirp signal
and the received echo signal [22]. After getting the time delay, we
can derive the distance D between the target and device using

_ At X
T2

D , (3

where v is the sound propagation speed in the air.

3.3 Signal Model for Imaging

Received echo signals are organized into a profile matrix for imag-
ing, as shown in Fig. 3(b). This matrix arranges M samples per col-
umn with N consecutive collected profiles to construct the image.
Then we apply the Hilbert transform to the echo signals, followed
by dechirping each column to extract the intermediate frequency
(IF) signal matrix. Subsequently, a 2-D Fast Fourier Transform (FFT)
is performed on the IF signal matrix along both the range and az-
imuth dimensions. This step effectively maps each scatter point
in physical space to a corresponding pixel in the image space, I,
where a scatter point p is identified by a peak at position (py, pa)
in the 2-D image space, which can be represented as

X sinc

I(iq, ir) = Asinc [ZkT (ir — pr)
S

0

%(ia - Pa)] )

where A is a constant related to the amplitude and chirp duration,
vs 1s the sound speed, A is the wavelength, 6 is the angle that the
target rotates during the imaging process, i, and i, are the indexes
along the range dimension and azimuth dimension, respectively.
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Figure 5: Target movement can be decomposed into radial
movement and tangential movement, where radial move-
ment causes the harmful Doppler effect.

4 SONDAR Design

Fig. 4 illustrates the core concept of SONDAR. It first generates a
2-D image of a moving target through ISAR-based imaging and
then converts this image from frequency space to physical space.

4.1 Preprocessing

4.1.1 Interference Cancellation. In acoustic imaging, three primary
types of interference complicate signal processing: ambient sound
noises, direct path interference from the speaker to the microphone,
and multipath reflections from static objects like walls. To mitigate
ambient sound noises, which typically occur below 16 kHz, we use a
finite impulse response (FIR) bandpass filter with a pass-band range
of 18 — 22 kHz. This filter effectively isolates the received chirp
signals by excluding lower frequency sounds. For the direct path
and multipath reflections, which are relatively consistent over time,
we apply a background subtraction technique [24]. This method ef-
fectively removes these static components from the signal, allowing
for clearer analysis of the moving target’s echoes.

4.1.2  Doppler Velocity Estimation. Fig. 5 depicts the decomposition
of target movement into radial and tangential components as the
target approaches, passes, and moves away from the device. Unlike
tangential movement, radial movement induces a Doppler velocity,
which is also known as a Doppler frequency shift. Acoustic sensing
is particularly vulnerable to this Doppler effect due to the relatively
low speed of acoustic signals, making it highly sensitive to changes
in target velocity [16]. For instance, if a target moves at a velocity of
30 cm/s at an angle of 34° relative to the device, the resulting radial
velocity is about 25 cm/s. This movement can lead to an additional
3 cm error in distance estimation, potentially causing misalignment
of echoes and blurring the resultant image. Accurately estimating
and compensating for the Doppler velocity is therefore essential to
obtain a clear and accurate image.

The key idea for estimating the Doppler velocity is to use the
moment when the target is closest to the device, which represents
the point of minimal radial movement and distance estimation
error. At this point, the estimated distance serves as a reference
for calculating the Doppler velocities (or radial velocities) for other
profiles. We calculate a series of distances between the target and
the device throughout the imaging process using the estimated
time delays of echo signals as indicated in Equation (3). These
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Figure 6: Echo alignment removes extra delays caused by
target movement and aligns echo signals across profiles.

distances are denoted as [D1, -+, Dpin, " * - » Dn], where D1 and
Dy are the distances at the first and last profiles, respectively. Dpin
is the minimum distance.

After identifying the minimal distance Dy, we calculate the
radial velocities at adjacent profiles, specifically V;, ., and V. . ...
Take V;_ ..., as an example. The difference between the distance
at the (min+1)-th profile Dy, +1 and the distance at the (min)-
th profile Dy, involves two components, including the displace-
ment V., .. (tmin+1 — tmin) and the velocity-induced deviation
(fc_ % )Vrminﬂ (tmin+1 _tmin)

i , where f; and B are the carrier frequency
and chirp bandwidth, respectively [16]. Since all the variables
except the radial velocity V;, . ., are known, we can derive it as

_ Drnin +1 = Drmin (5)

Viinn = ,
min (f-5)
(1 - fTZ)(tmin+1 - tmin)

This procedure is iteratively applied to each profile until radial
velocities are determined for all profiles. This approach allows for a
precise computation of the target’s radial velocity and helps correct
for any potential deviations in the imaging process caused by the
Doppler effect.

4.2 Doppler-free Echo alignment

The image of a moving target is constructed using the time delays
from echo signals reflected by multiple scatter points. However, as
shown in Fig. 6(a), target movement introduces additional time de-
lays in echo signals that vary across different profiles, complicating
the imaging process. These additional delays obscure meaning-
ful image information, as visualized in Fig. 7(b), which shows the
pre-alignment image of a glass food storage box in Fig. 7(a).

To address this issue, it is essential to align the echo signals
across various profiles to remove the extra delays introduced by the
target’s movement. Effective alignment, as illustrated in Fig 6(b),
ensures that the resulting image accurately represents the target’s
shape without distortion caused by its motion.

4.2.1 Limitation of Traditional Method. The traditional method for
calculating extra delays in echo signals relies on maximizing the
similarity between adjacent profiles using cross-correlation [12].
The green dotted line in Fig. 8 shows the delays computed by this
method when a target moves away from the device at a velocity
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Figure 7: An illustrative example of imaging a glass food storage box moving at a speed of 10 cm/s and positioned 30 cm away
from the device. (a) Photo. (b) Before echo alignment. (c) Traditional echo alignment. (d) Our echo alignment method. (e) After
Doppler shift removal. (f) After image conversion. (g) The ground-truth image.
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Figure 8: The comparison of echo alignment methods.

of 10 cm/s. The presence of Doppler shifts significantly impairs its
effectiveness, causing deviations of the computed delays from their
actual values. The deviated delays cause misalignment for profiles,
resulting in a degraded image as shown in Fig. 7(c). The degradation
is so severe that it becomes hard to discern any objects, highlighting
the need for a more robust approach for echo alignment.

4.2.2  Our Method. We have developed a new chirp template de-
signed to mitigate the effects of Doppler shifts on echo signals.
The principle behind this approach is that movements of the target
toward or away from the device cause the reflected echo signals
to compress or stretch in both the time and frequency domains.
Utilizing the Doppler velocities V; estimated in Sec. 4.1.2, we crafted
a chirp template that mirrors this compression or stretching.

The chirp template ST(#) compensates for these distortions by
adjusting its frequency and time characteristics to align with the
modified echo signals. It is mathematically defined as ST(t) =

cos (27[ (fc’t+ 2T’t )),where t € [0,T!], and

f=fox(1-3)

Vi
B’=B;<(1—U—S) . (6)
T =%

s

fe, B, and T¢ represent the carrier frequency, bandwidth, and dura-
tion of the transmitted chirp, respectively, and vs is the speed of
sound. Note that, since the frequency of the chirp signal sweeps
linearly over time, we need to compensate not just the central fre-
quency of the chirp signal but the frequency at each timestamp,
which is achieved by correcting B and T. By conducting a cross-
correlation between the specifically designed chirp template and
echo signals from each profile, we can accurately determine the
extra delays, effectively removing the impact of Doppler shifts, as
illustrated by the red dashed line in Fig. 8. We pinpoint these extra
delays by identifying the strongest peaks in the correlation results.
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Figure 9: Compared to (a) a close target, (b) dechirping echo
signals from a far-away target needs a longer duration, re-
sulting in inadequate sampling. (c) Down-conversion is per-
formed on received echo signals to avoid this issue.

Then we implement echo alignment by synchronizing extracted
delays across different profiles. Fig. 7(d) shows the results of ap-
plying our echo alignment technique. We can observe that the
rough contour of the target is clearly visible, demonstrating the
effectiveness of this method in enhancing image clarity.

4.3 Multi-scatter Imaging

Unlike previous acoustic sensing systems such as motion tracking,
which view a moving target as a single scatter point, our proposed
imaging system treats the target as a composition of multiple scatter
points. This section outlines the methods for extracting image
information from echo signals reflected by these scatter points.

4.3.1 Addressing the Inadequate Sampling Issue. The conventional
method for generating a target image is constructing a downchirp
signal and using it to perform the dechirp process. This process
involves multiplying the downchirp signal with the received echo
signals, which have been converted into complex signals via the
Hilbert transform [28]. As illustrated in Fig. 9(a), the red upchirp
signals represent the echoes from multiple scatter points received in
a single profile. And the blue downchirp signal sweeps from f + kTT
to f — k—T over a duration T. Here, f; is the carrier frequency, k
the ch1rp slope, and T the profile duration. Given that k = T and
T = T; + T, where B, T;, and T, represent the chirp bandwidth,
chirp duration, and empty duration, respectively, the maximum
frequency of the downchirp signal is expressed as f; + %
The empty duration T, is crucial as it ensures that all reflec-
tions from the target are captured. For targets close to the device,
a smaller T, suffices, and the conventional method functions ef-
fectively as depicted in Fig. 9(a). However, for distant targets, a
larger T, is necessary, leading to potential undersampling issues.
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Figure 10: (a) Dechirping echo signals for a stationary target
outputs single-frequency IF signals. (b) However, the same
dechirp process for a moving target results in wideband IF
signals due to Doppler shifts. (c) Our method adopts a modu-
lated downchirp signal to remove its impact.

Specifically, the maximum frequency of the downchirp signal may

J%, where fs

exceed the device’s maximum supportable frequency
is the sampling rate, as demonstrated in Fig. 9(b).

To address this issue, we propose a straightforward yet effective
approach that down-converts the received echo signals to the base-
band. This is achieved by multiplying the received echo signals with
cos(27x fzt) and subsequently applying a low-pass filter to eliminate
high-frequency components. This results in a baseband signal that
is centered at 0 Hz and sweeps from —% to %, as shown in Fig. 9(c).
The corresponding downchirp signal is then configured to sweep

K kT

inversely from TT to — %5~ over the same duration T.

4.3.2  Removing the Impact of Doppler Shifts for Scatter Points.
Fig. 10(a) shows the dechirp process for echoes from multiple scat-
ter points on a stationary target. It consolidates signal energies
into distinct single-frequency intermediate-frequency (IF) signals,
which carry spatial information about the scatter points. However,
as depicted in Fig. 10(b), when the target moves away from the
device, Doppler shifts extend the echo signals in time and frequency.
Dechirping these stretched signals with the standard downchirp
results in wideband IF signals, which have dispersed energy and in-
creased noise susceptibility. This effect is evident in Fig. 7(d), where
the target’s blurred contour makes precise measurement difficult.
To solve this issue, we develop a modulated downchirp signal, tai-
lored for each scatter point based on their estimated Doppler veloc-
ities, which we calculate in the preprocessing stage. The modulated

downchirp, defined as MD(t) cos (271' (k'TTt - %tz)), where

te [0, Tk =kx(1- Z—:)z, k is the chirp slope, T the profile dura-
tion, and vs the sound speed. This modulation aligns the downchirp
signal with the stretched echoes, producing clean single-frequency
IF signals as shown in Fig. 10(c). The image processed with this
technique, as depicted in Fig. 7(e), shows a more distinct and clearer
contour compared to the one without removing Doppler shifts.

4.3.3  Phase Compensation. Target movement introduces phase
offsets in received echo signals, potentially blurring the resulting
image [32]. To correct these phase offsets, we use the Minimum
Entropy Autofocus (MEA) algorithm [7], commonly employed in
radar imaging. Once the phases are compensated, we apply a 2-D
Fast Fourier Transform (FFT) to the intermediate frequency (IF)
signal matrix, generating the target image in frequency space.
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Figure 11: The illustration of azimuth angle estimation.

4.4 Image Conversion

The image generated so far is in frequency space and does not
accurately capture the target’s actual geometric details. This section
explains how we transform the image from frequency space to
physical space to precisely measure the target’s size and shape.

4.4.1 Frequency-to-physical Space Mapping. The mapping opera-
tion is achieved by multiplying pixel coordinates of the frequency
image along range and azimuth dimensions with their frequency
resolutions, respectively. We show how frequency resolutions can
be derived from signal parameters and target motion parameters.
Specifically, the range resolution p, can be computed using the FFT
frequency resolution Af = %, which can be derived as

where B and T, are the chirp bandwidth and duration, respectively.
T is the profile duration. v is the sound speed in the air. The azimuth
resolution p, is related not only to signal parameters but also to
target motion parameters [35], which can be expressed as

A A
=5 7T o (8)

2wl 20
where A is the carrier wavelength. w, I, and © are the target angular
velocity, rotation interval, and rotation angle along its geometric
center, respectively. Prior radar imaging systems [35] assume that
the angular velocity is constant during the imaging process. This
is a valid assumption since the imaging duration for radar signals
is only 50 ms. However, the constant angular velocity cannot be
guaranteed for acoustic signals that require at least 2.5 s for imaging.
Next, we present an approximate estimation solution that allows
us to accurately estimate the motion parameter, i.e., rotation angle.

Pr

Pa

4.4.2 Motion Parameter Estimation. According to the motion de-
composition model in Sec. 3.1, the rotation angle at the target’s
geometric center equals to the azimuth angle the target traverses
along its actual trajectory. We use accurately estimated distances
from acoustic signals to compute this azimuth angle. As shown in
Fig. 11, if a target moves from the right side R to the left side L of the
device, the azimuth angle 0 is split into two components, 6; and 0,
by the line from the device’s position O to the midpoint M where
the target is closest to the device. Then we approximate AOMR and
AOML as right triangles and estimate the azimuth angle as
Drnin Dhinin

+ arccos s
1 r

©

0 = 6; + 0, = arccos

where Dj, Dpyin, and D, are the estimated distances between the
target and device, respectively. The above-mentioned approxima-
tion is based on the fact that the target moves approximately in a
straight line in our application scenarios, e.g., on a conveyor belt
or manually pushing the box. Our experimental results in Sec. 6.2.7
show that this approximation is valid even if the target trajectory
deviates from the straight line by tens of centimeters.
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Linear Guide

Figure 12: The illustration of the experiment setup.
4.4.3 Size and Shape Measurement. Fig. 7(f) shows the physical-
space image of the glass food storage box generated by SONDAR,
which aligns well with the ground-truth image as visualized in Fig.
7(g).To determine the size, we first calculate the differences in pixel
values along the range dimension and identify boundary pixels
based on an empirical threshold of 6 dB. The target’s length is then
determined by calculating the maximum distance between the up-
per and lower boundaries. The target’s width is similarly computed
along the azimuth dimension. For shape extraction, we utilize the
OpenCV [3] library, a well-known open-source tool. Since the ob-
ject size does not exceed 700 mm X 700 mm, we manually crop the
generated image as this size and ensure the target is centered in
the image. We input a physical-space image into OpenCV, which
then classifies the shape.

5 Implementation

We implement our proof-of-concept system using two commodity
devices: a Bela [29] platform and a Samsung Galaxy S9+ smartphone.
Signal processing and analysis are carried out using MATLAB on
a Hasee laptop equipped with an Intel i7 CPU and 16GB of mem-
ory. As depicted in Fig. 12, we perform controlled experiments by
mounting the target on a FUYU FSL40 Linear Guide.

Bela Platform: The Bela [29] platform is favored in acoustic
sensing research for its versatility in supporting various micro-
phone and speaker configurations. We equipped the Bela with a
PUI Audio AS03104MR-N50-R speaker for signal transmission and
a SparkFun BOB-18011 MEMS microphone for signal reception.

Smartphone: Our prototype system was also implemented on
a Samsung Galaxy S9+ smartphone using the existing LibAS frame-
work [30]. The framework streams acoustic signals to the laptop
without a need of considering smartphone-specific details.

Acoustic Signals: To avoid interference from environmental
noise, which typically falls below 16 kHz [16], we configure our
system to sweep frequencies from 18 kHz to 22 kHz. The duration of
each chirp is set as 5 ms, and the empty duration is set as 20 ms. The
Samsung Galaxy S9+ smartphone employs a sampling frequency
of 48 kHz, while the Bela platform operates at 44.1 kHz.

Ground Truth Measurements: We utilize an electronic caliper
to measure the ground truths of target sizes. Specifically, for each
target, we measure its maximum length and width. In addition, we
manually record the ground-truth shapes for targets.

6 Evaluation

We conducted a thorough evaluation of the SONDAR system using
the Bela platform under various conditions and carried out two
field studies to assess its applicability in real-life scenarios. For
consistency across tests, unless specified otherwise, we used a
cardboard box (140 mm X 140 mm) as the target. The minimum
distance between the target and the device was maintained at 30 cm,
with the target moving at a speed of 10 cm/s. Each experiment was
repeated 20 times to ensure reliability.
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Table 2: Performance comparison among different systems.

Scenes
Methods Signals LOs NLOS
Shape Size Shape Size
accuracy  error(mm)  accuracy  error(mm)
Zheng [37] RGB 93.4% 18.37 - -
Qin [26] RGB 95.3% 2.50 - -
Wang [33] RF 89.7% 13.63 91.7% 13.63
Mao [23] Acoustic 84.2% 27.76 82.1% 29.62
Our system | Acoustic 92.9% 5.39 90.4% 6.47
Dish Bottle Apple
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Figure 13: Imaging results for three common objects.

We report the average size measurement errors, which are de-
fined as the difference between the estimated and actual sizes of
the target. Additionally, we assess the accuracy of shape estimation,
which is defined as the ratio of correctly identified shapes to the
total number of shape measurements.

6.1 Overall Performance

6.1.1 Imaging Results for Different Objects. To intuitively demon-
strate the effectiveness of SONDAR, we evaluate the imaging perfor-
mance for objects with different shapes, including dish, water bottle,
and apple, as illustrated in Fig. 13. We can observe that regular-
shaped objects (i.e., dish and bottle) can achieve better imaging
performance than irregular-shaped objects like apple. The reason
is that irregular-shaped objects can cause diffusion for acoustic
signals, leading to distortion in imaging results. Amazingly, even if
the surfaces of objects are rough and uneven, we can still achieve
reasonably accurate imaging results.

6.1.2  Comparison with the State-of-the-art System. We conducted a
qualitative performance comparison between our SONDAR system
and other state-of-the-art systems when measuring size and shape
for 30 daily objects. These tests were carried out under both a Line-
of-Sight (LOS) scenario and a Non-Line-of-Sight (NLOS) scenario
with objects inside a cardboard box. The tested objects varied widely
in shape and size, including water bottles, and kitchen utensils, etc.
We report the average accuracies across all objects.

As shown in Table 2, SONDAR achieves millimeter-level ac-
curacy in size measurement and approximately 93 % accuracy in
shape identification under the LOS scenario, which is comparable
to vision-based methods. However, unlike vision-based methods,
our system can accurately measure the object’s size and shape un-
der the NLOS scenario. Additionally, our system shows superior
performance over the state-of-the-art system AIM [23], primarily
due to the AIM’s inability to handle the Doppler effect.
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Figure 14: Impact of shape. Figure 15: Impact of material.
Table 3: Impact of cardboard boxes with different sizes.

. Type Small Medium Large

Size (mm)
Actual length L, 140.00 280.50 458.00
Actual width W 140.00 155.50 336.00
Average measured length L, 136.25 285.70 485.40
Average measured width Wy, 144.60 161.90 349.75
Average length error|Lg; — Ly, | 3.75 5.20 27.40
The percentage of length error 2.68% 1.85% 5.98%
Average width error|W, — Wy, | 4.60 6.40 13.75
The percentage of width error 3.29% 4.12% 4.09%

6.2 Impacting Factor Analysis

6.2.1 Impact of Target Shape. We classified the tested objects into
six shape categories: circle, rectangle, square, triangle, ellipse, and
polygon. Each contains 20 objects. The confusion matrix in Fig. 14
illustrates the shape measurement accuracy. The overall accuracy
exceeds 90%, but the polygon’s accuracy is lower. This discrepancy
is caused by short edges in polygonal objects, which our system may
not detect due to weak reflections. Note that our current system
only measures the 2D shapes of objects. And it can be extended to
obtain the 3D shapes of objects if two sets of devices are deployed.

6.2.2 Impact of Target Size. We evaluate the impact of target sizes
by conducting experiments using cardboard boxes with different
sizes. As listed in Table 3, we can achieve a millimeter-level size
measurement accuracy for both small and medium boxes. We can
also observe that, as the box size becomes large, the size measure-
ment error also increases. The reason is that a larger box results in
weaker signals reflected from edge scatter points due to the limited
beam width caused by the speaker’s directivity.

6.2.3 Impact of Material. Since different materials exhibit various
capabilities for absorbing and reflecting acoustic signals, we study
how the imaging results vary across different materials. We chose
four materials with the same size of 140 mm X 140 mm as targets,
including wood, plastic, cardboard, and metal. As we can observe
from Fig. 15, the size measurement error for the metal is the smallest
due to its highest reflection coefficient.

6.2.4 Impact of Distance. We evaluate the impact of the distance
between the target and device by varying it from 30 cm to 150 cm
with a step size of 30 cm. As shown in Fig. 16, the performance
degrades as the distance increases, which is expected due to the
lower SNR. However, even when the distance is increased to 90 cm,
we can still achieve a millimeter-level size measurement error.

6.2.5 Impact of Target Speed. Target movement introduces the
Doppler effect. We evaluate the performance with and without
the elimination of the Doppler effect at different speeds. We set
the target to move at five different speeds, ranging from 10 cm/s
to 30 cm/s. As shown in Fig. 17, it is evident that, benefited from

Figure 16: Impact of distance.
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removing the Doppler effect, our system SONDAR outperforms the
prior system AIM. Additionally, we find that even after eliminating
the Doppler Effect, the error increases with speed. The reason is
that, since the trajectory length is fixed, a higher speed indicates
less data for imaging, making it more susceptible to noise.

6.2.6 Impact of Variable Speed. Target movement may vary and
not remain constant. We evaluate the impact of the variable target
speed using four different speed modes. Mode 1 gradually increases
the speed from 15 cm/s to 30 cm/s. Mode 2 gradually decreases the
speed from 15 cm/s to 0 cm/s. Mode 3 increases the speed from
15 cm/s to 20 cm/s and then decreases the speed to 10 cm/s. Mode
4 decreases the speed from 15 cm/s to 10 cm/s, then increases the
speed to 15 cm/s, and finally decreases the speed to 10 cm/s. As
shown in Fig. 18, we can achieve reasonably good performance
when the target moves at a variable speed. Additionally, by com-
paring Fig. 18 with Fig. 17, we can observe that the error in variable
speed is larger than that in constant speed. This is because the
assumption where the target moves at a constant speed within each
profile does not hold if the target speed is variable.

6.2.7 Impact of Trajectory Deviation. A target’s trajectory might
deviate from a straight line, e.g., an individual holding a box and
passing through a security gate. We conduct experiments to evalu-
ate how the trajectory deviation impacts our system performance.
We asked a participant to manually move the target along pre-
defined trajectories marked on the ground. The trajectory devia-
tions are introduced in the radial direction, varying from 2 cm to
12 cm with a step size of 2 cm. Fig. 19 shows that our system can
achieve a reasonably high size measurement accuracy even if there
exists a trajectory deviation of 8 cm. Furthermore, we found that,
although the size measurement error is high for a large trajectory
deviation, we can still accurately recognize the target shape.

6.2.8 Impact of Speaker-Microphone Distance. The distance be-
tween the speaker and the microphone varies across devices. We
change the speaker-microphone distance to evaluate its impact
on imaging. Fig. 20 depicts the size measurement errors when the
speaker-microphone distance is set to 1 ¢cm, 5 ¢cm, 10 cm, and 15 cm,
respectively. We can observe that the size measurement error first
decreases and then increases as the distance increases. The reason
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Figure 21: Impact of obstruction.

is that the device cannot capture the reflections from all scatters on
the target if the speaker-microphone distance is too small or large.

6.2.9 Impact of Obstruction. One appealing advantage of acoustic
imaging is that it can image a target even under obstruction. As
shown in Fig. 21, we conduct experiments to evaluate the imaging
performance under different obstruction covers, including cloth,
plastic bag, paper bag, and cardboard box. We can observe that we
can clearly identify the shape of the water bottle under different
covers.However, the contour of the water bottle becomes blurred
when it is inside a cardboard box. This is because the cardboard
box reflects most of the acoustic sensing signals.

6.2.10  Impact of Environment Diversity. We perform experiments
in three environments with different room sizes and multipath,
including a living room (6 m X 3 m), a laboratory (20 m X 10 m), and
a conference room (5 m X 7 m). Benefitted from the background
subtraction technique that removes the multipath interference, the
size measurement errors are similar across the three environments.

6.2.11 Impact of the Ambient Noise. We conduct experiments to
evaluate the impact of ambient noises. We introduced four types of
noises that are generated by human (58.1 dB), dishwasher machine
(50 dB), air conditioner (70 dB), and lawnmower (105 dB). We ob-
serve that the size measurement errors for these noises are similar
to those for quiet environments (36.8 dB). The reason is that the
frequencies of noises are below 16 kHz, which is lower than the
frequency band adopted for sensing. Our interference cancellation
module can remove the impact of ambient noises.

6.3 Field Studies

6.3.1 Apple Grading. Due to variations in fruit sizes, farmers need
to grade fruits according to specific size categories to optimize eco-
nomic gains. However, the conventional method for fruit grading
relies on labor-intensive manual processes or the utilization of ex-
pensive equipment [2]. We demonstrate that our proposed system
makes it possible for fruit grading using cheap acoustic devices. To
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Figure 23: Fragile item breakage detection.

evaluate the performance of our system in fruit grading, we con-
ducted experiments to image 20 different apples and measure their
corresponding sizes. Fig. 22(a) illustrates apples in three grades,
ie,6cm—7cm,7 cm— 8.5 cm, and > 8.5 cm, according to the
American apple grading standards [31]. As shown in Fig. 22(b), the
size measurement error for apples is less than 1 cm, indicating that
our system can be effortlessly applied to apple grading.

6.3.2  Fragile Item Breakage Detection. SONDAR can be used in the
courier industry to check the completeness of items in packages on
a conveyor belt during the sorting process or verify the integrity
of items before customers sign for their packages. We showcase
that our proposed system can detect the breakage of a mug without
opening the cardboard box using a commodity smartphone. We put
an intact mug inside a cardboard box and then manually pushed the
box at 30 ¢m in front of the smartphone. We did the same procedure
for the broken mug. As shown in Fig. 23, if we adopt the image of
the intact object as a reference, it is easy to determine if the object
is complete without opening the package.

6.3.3 Box Size Measurement using Smartphone. We envision that
our proposed system SONDAR can be potentially adopted in the
express delivery industry, where a courier needs to measure the
package size. Our system can accurately measure the packing box
size when the courier manually pushes the box in front of a smart-
phone. As shown in Fig. 24(a), we asked a participant to sit at 30 cm
in front of the smartphone and manually push the box. Fig. 24(b)
shows the size measurement errors for three different sizes of
packing boxes, including Small (279.4 mm x 381.0 mm), Medium
(279.4 mm x 431.8 mm), and Large (381.0 mm X 533.4 mm). Although
the size measurement errors for the hand-pushing scenario are
larger than those for the guide-trail scenario, the centimeter-level
accuracy is sufficient for box size measurement.

7 Conclusion

This paper introduces SONDAR, the first acoustic imaging system
for measuring the shape and size of moving targets on commodity
devices. Inspired by ISAR-based radar imaging, we propose novel
methods to address the unique challenges presented in acoustic
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Figure 24: Box size measurement using smartphone.

signals, including Doppler-free echo alignment and frequency-to-
physical space mapping. Extensive experiments demonstrate the
feasibility and effectiveness of our proposed system. We believe
our proposed system can be applied to many real-world size and
shape measurement applications.
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