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Cardiovascular disease is a leading cause of mortality worldwide and a major contributor to rising healthcare costs. Early
detection of arterial stiffness through metrics such as Pulse Wave Velocity (PWV) and Augmentation Index (Alx) is essential for
cardiovascular disease prevention and treatment. However, conventional measurement methods typically require expensive,
specialized equipment and clinical settings. In this paper, we explore the use of everyday earphones to monitor PWV and Alx
in daily life by capturing skin displacement waveforms induced by arterial pulsation. However, several key challenges must be
addressed. First, detecting subtle skin displacement is difficult due to strong self-interference from the speaker to microphone.
To address this, we propose a Doppler shift-based displacement estimation approach to isolate dynamic movements from static
interference. Second, estimating PWV requires simultaneous two-point measurements, which is non-trivial with standard
earphones. We address this with a hardware—software co-design that connects two earphone pairs via a commercial audio
splitter and uses orthogonal frequency division multiplexing (OFDM)-based signal separation to extract displacement signals
from both sites. Third, enabling general public use without medical training requires thoughtful system design. To this
end, we develop a user-friendly mobile application that provides real-time feedback, along with a 3D-printed enclosure to
facilitate ease of use and wide accessibility. We conducted IRB-approved clinical studies with 32 participants, comparing our
measurements against ground truths from medical devices. Results show that our method achieves a PWYV error of less than
0.5 m/s and an Alx error of less than 4%, meeting established medical standards. Please find the demo of our system here.
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Fig. 1. From clinic to at-home: transitioning from traditional artery stiffness assessment to our innovative earphone-based
solution. (a) Conventional clinical methods require trained personnel and specialized equipment to measure PWV and Alx. (b)
Our approach enables low-cost, non-invasive arterial health monitoring at home using wired earphones and a smartphone®.

1 INTRODUCTION

Cardiovascular disease (CVD) remains a leading cause of death worldwide, placing immense economic and
logistical burdens on national healthcare systems [31, 53]. According to the World Health Organization (WHO) [31,
61], in the U.S. alone, about 30% of adults receive treatment for a cardiovascular condition or risk factor each
year, driving an estimated annual cost of nearly $600 billion. Cardiovascular disease often develops quietly over
time, with few noticeable symptoms until a major event such as a heart attack. Yet, as the WHO reports [61, 64],
over 80% of premature cardiovascular cases are preventable with early detection and timely treatment.

Evaluating arterial stiffness is a key step in identifying cardiovascular diseases at an early stage. It measures
Pulse Wave Velocity (PWV) and Augmentation Index (Alx) [46, 60] , two clinically important metrics that serve
as early indicators of vascular aging and heightened cardiovascular risk. As shown in Fig. 1(a), PWV is typically
derived from two-point measurements that capture the time it takes for a pulse wave generated by the heart
to travel between two arterial sites, commonly between the neck (carotid artery), wrist (radial artery), or ankle
(posterior tibial artery). Alx, on the other hand, is calculated based on the relative amplitude ratio of the dicrotic
notch to the systolic peak in the arterial waveform, typically measured at the wrist.

To date, obtaining accurate measurements of these two metrics requires dedicated clinical equipment such
as Atherosclerosis detectors [56], which are costly and not readily available outside of clinical or research
environments. Furthermore, these procedures require trained medical personnel to operate the equipment and
interpret the results, necessitating in-person hospital or clinic visits. Such logistical and financial constraints make
these assessments inaccessible for routine monitoring, particularly in rural areas or underserved communities.
As a result, individuals who could benefit most from frequent and long-term cardiovascular monitoring, such as
those with hypertension, diabetes, or a family history of cardiovascular diseases, are unable to receive timely
assessment and preventive care.

Recent advances in mobile and wearable sensing have enabled the monitoring of various physiological signals
using everyday devices, including smartphones, smartwatches, earphones, etc. These signals include heart
rate [14], respiratory rate [50], heart sounds [68], and even blood pressure [9, 13, 27], enabling convenient and
continuous health monitoring outside of clinical environments. While these measurements offer valuable insights
into general cardiovascular status, they only capture the observable effects of vascular conditions rather than
directly measuring the underlying mechanical properties of the arterial system. This raises an important question:
can we extend these sensing capabilities to directly estimate arterial health metrics like arterial stiffness, which are

“This figure is adapted from one originally generated by ChatGPT.
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more closely tied to early-stage vascular aging and long-term cardiovascular risk? Answering this question could
pave the way for accessible and affordable tools for at-home cardiovascular screening and early intervention.

This paper explores the use of everyday earphones to monitor PWV and Alx. Rather than directly capturing
pressure pulse waveforms, our approach reuses earphone as a SONAR system (i.e., speaker as the SONAR
transmitter and the line-in microphone as the SONAR receiver) to estimate displacement waveforms generated
by subtle tissue oscillations as the pressure pulse wave propagates through the arteries. As illustrated in Fig. 1(b),
similar to the clinical setup, we position a pair of earphones at two arterial sites, e.g., one near the neck and the
other near the wrist . The earphone’s speaker emits acoustic probing signals, which interact with surrounding
skin and are modulated by subtle oscillations caused by arterial pulsations during each heartbeat. These signals
are reflected and then captured by the earphone’ line-in microphone. By analyzing the received signals from both
sites, the smartphone visualizes the resulting displacement waveforms in what we term an Acoustoscillogram
(AOG). From AOG signals, we can estimate pulse transit time and then derive PWV as well as Alx, enabling an
accessible and non-invasive solution for continuous arterial health monitoring in everyday settings.

While promising, several challenges must be addressed for real-world deployment. The first challenge lies
in estimating subtle displacements induced by tissue oscillations in the presence of strong self-interference.
Unlike more noticeable millimeter-level chest movements caused by heartbeat or respiration [2, 37, 50], arterial
pulsations in peripheral regions like the wrist and ankle generate much smaller displacements, typically around
0.2 mm [22], making them inherently more difficult to detect. This challenge is further exacerbated in individuals
with higher body fat, where increased tissue damping further weakens reflected signals. In addition to signal
damping, there exists strong self-interference where acoustic signals propagates directly from the speaker to
the microphone without interacting with skin. These interference signals arrive nearly simultaneously with the
desired skin reflections but at much higher intensity, masking the subtle displacements we aim to capture.

To address this challenge, we propose estimating skin displacement based on Doppler shifts extracted from
the received acoustic signals. The key insight is that, although actual skin displacement is small, Doppler shifts
induced by tissue oscillations are relatively large and can be reliably computed due to the high phase resolution
of acoustic signals. Moreover, since self-interference signals originate from a static path between the speaker and
microphone, they can be effectively distinguished from dynamic reflections associated with tissue oscillations. To
extract Doppler shifts, we apply the Hilbert transform to obtain instantaneous phases and compute their time
derivative to estimate instantaneous frequencies. These frequency shifts are then used to calculate skin velocities,
which are integrated over time to derive displacement waveforms or AOG signals.

The second challenge arises from the requirement of two-point measurement to estimate pulse transit time,
which involves placing two pairs of speakers and microphones at separate arterial sites. However, most smartphone
audio hardware specifications [12, 17, 51, 57] indicate that, while earphones typically support two output channels
for stereo audio playback, the external microphone input is limited to a single recording channel. This hardware
limitation makes it difficult to simultaneously record independent reflection signals from two sites.

To address this second challenge, we propose an approach that uses a hardware-software co-design. On the
hardware side, we connect two pairs of earphones with a commodity audio splitter [19], each of which consists of
two speakers and one microphone. Then the splitter is plugged into the smartphone. Although this setup enables
simultaneous recording from two microphones, the recorded signals are mixed into a single input channel on
the smartphone. To separate these signals, we introduce a software solution based on orthogonal frequency
division multiplexing (OFDM). Specifically, we design the transmitted acoustic signal as a multi-tone waveform,
modulating one frequency onto the left audio channel and a different frequency onto the right channel of the
splitter. After receiving the mixed signals, they are demodulated to extract the individual frequency components,
which are then processed separately to estimate AOG signals from each arterial site.

TOur proposed system can also operate at other arterial sites, such as the ankle, as demonstrated in our evaluation.
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Table 1. Comparison of our method and prior work for estimating physiological signals, including Respiration Rate (RR),
Heart Rate (HR), Heart Rate Variability (HRV), Blood Pressure (BP), Pulse Wave Velocity (PWV), Augmentation Index (Alx).

Technology Wide Low Low  Skin Two-point Measurement Physiological
availability cost power tone measurement location signals
IMU IMU sensor [33] v v v v X Chest, Neck RR, HR
Light PPG sensor [9, 11, 13, 21, 25, 45, 54] X v Finger, Ear canal, etc HR, BP, PWV
WiFi device [2] X X X v X Chest RR, HR
RF RFID device [28, 58] X X X v X Chest RR, HR
mmWave radar [1, 24, 38] X X X v X Wrist, Chest RR, HR, BP
Smartphone [50, 65] v v v v X Chest RR, HR
Acoustic Earphone [15, 20, 67] v v v v X Ear canal RR, HR, HRV
Our method v 4 v v v Wrist, Neck, Ankle, etc PWV, Alx

The third challenge is how to enable the system to be easily and reliably used by the general public without
the guidance of trained clinicians. First, arteries vary in size, depth, and structure across individuals and body
locations, making it non-trivial to accurately locate them. Second, motion artifacts from surrounding muscles can
significantly degrade the quality of AOG signals. Third, assembling and positioning speakers and microphones
on earphones in a consistent and user-friendly manner remains an open design problem.

To address this third challenge, we develop a mobile application that provides real-time feedback during
arterial health measurements. Based on the characteristic physiological patterns in AOG signals, we design a
one-dimensional convolutional neural network to assess signal quality and determine whether AOG signals are
sufficiently clear for computing PWV and Alx. If no arterial signals are detected due to incorrect positioning
or motion artifacts, the application prompts the user to make necessary adjustments. To improve usability and
consistency, we also design a 3D-printed enclosure that houses both the speaker and microphone from the
standard earphone, and attaches to an adjustable band to ensure stable placement on the body.

The main contributions of this work are summarized as follows:

To the best of our knowledge, this is the first study to investigate arterial health insights using acoustic sensing
with affordable and widely accessible earphones. We believe this system represents a significant step toward
enabling at-home arterial risk assessment in real-world settings.

e We propose a series of hardware and software designs to ensure the system operates reliably and is easy
to use. These include signal processing algorithms for skin displacement estimation, signal modulation and
demodulation techniques for simultaneous sensing at two arterial sites, sensor designs featuring 3D-printed
enclosures, and a mobile application that guides users through the measurement process.

e We implement our prototype real-time system and test it on various devices, including 6 smartphones and 6
earphones. Our results demonstrate the feasibility of using widely available wired earphones for arterial health
monitoring. Please find the demo of our arterial health monitoring system here.

e We conducted extensive clinical experiments with 32 human subjects under IRB-approved protocols, including

26 healthy individuals and 6 patients with cardiovascular conditions. We compared our estimated PWV and

Alx values against ground truth measurements obtained from clinical-grade devices. The results demonstrate

high accuracy, with a mean absolute error of less than 0.5 m/s for PWV and less than 4% for Alx, meeting

established medical standards* [10, 26, 34, 44, 49, 52].

#According to clinical guidelines, PWV measurement methods typically exhibit a bias of less than 1 m/s when validated against gold-
standard references [10, 34]. For Alx, invasive and tonometry-based methods generally show a bias of 4-12% [10, 26, 44, 49, 52]. In alignment
with these standards, we conservatively adopt a 4% threshold as an acceptable error margin.
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2 RELATED WORK

In this section, we review prior studies on physiological signal monitoring using various sensing technologies in
mobile and wearable devices, while highlighting how our approach to arterial health monitoring differs from
existing methods. As summarized in Table 1, these technologies are categorized based on the types of signals they
utilize, including inertial measurement units (IMU), light, radio frequency (RF), pressure, and acoustic signals.

IMU sensors offer a low-cost, low-power solution for physiological monitoring and are commonly integrated
into mobile and wearable devices. When placed on the neck or chest, they can enable respiration rate and heart
rate monitoring without optical or electrical contact [33]. However, even minor body movements can introduce
significant noise and reduce accuracy [43]. Moreover, IMUs are generally limited to basic metrics and lack the
sensitivity required for estimating advanced cardiovascular parameters [43].

Light-based methods, particularly those using photoplethysmography (PPG) sensors, are among the most
widely adopted techniques for physiological signal monitoring [6, 9, 13, 21]. Commodity smartwatches commonly
use PPG to track heart rate. Beyond this, several systems estimate blood pressure using PPG signals by capturing
pulse transit time or blood volume changes. For example, Crisp-BP [13] monitors blood vessel volume over
the cardiac cycle, while other approaches use ear canal pressure variations [9] or head-mounted light intensity
changes [25]. Stereo-BP [6] estimates blood pressure by measuring the pulse time difference between PPG signals
from left and right ear-worn devices. In addition, Byfield et al. [11] introduced a dual-PPG sensor system that
estimates PWV by tracking pulse arrival times between the fingertip and knuckle. Despite their popularity,
light-based methods have notable limitations. They are highly sensitive to skin tone, with signal quality often
degrading in individuals with darker skin [32]. Although Maclsaac et al. [42] and Guo et al. [23] have proposed
optimization techniques to mitigate this issue, these approaches typically require additional hardware or complex
algorithms, which may limit their practicality in real-world applications.

Recent studies have explored the use of wireless signals such as WiFi, RFID, and mmWave for physiological
monitoring [2, 39, 58]. While these methods are device-free and capable of capturing respiration and heart rate,
they suffer from key limitations. For example, Adib et al. [2] used a customized WiFi setup, making it impractical
for widespread or consumer use. RFID systems face similar cost and complexity barriers [58], and both WiFi and
RFID lack the spatial resolution necessary to detect advanced cardiovascular parameters. Although mmWave
technology offers higher resolution [39], its modules are still expensive (around $200) and consume significant
power, limiting their suitability for low-cost, continuous, or large-scale deployment.

More recently, researchers have explored the use of acoustic signals captured by earphones to monitor
physiological parameters. APG [20] enables robust cardiac monitoring using mass-market active noise cancellation
(ANC) headphones. HearBP [67] estimates blood pressure using in-ear microphones based on heart sounds.
Asclepius [15] introduces a low-cost plug-in peripheral that repurposes an earphone’s speaker as a microphone
to capture subtle phonocardiogram (PCG) signals from the ear canal. However, these systems rely on expensive
ANC headphones, earphones with built-in in-ear microphones, or customized hardware. In contrast, our system
uses low-cost wired earphones and focuses on arterial health insights, such as PWV and Alx, rather than general
cardiovascular metrics like heart rate, heart rate variability, or heart sounds.

To address the limitations of existing work, our approach re-purposes earphones as a SONAR system to estimate
displacement waveforms generated by subtle tissue oscillations as the arterial pulse wave propagates through
the body. By leveraging built-in speakers and microphones, the system emits acoustic signals and analyzes the
reflected waves to detect synchronized skin movements at multiple arterial sites. This enables the estimation of
advanced cardiovascular metrics such as PWV and Alx in a low-cost, portable, and widely accessible manner.

3 The Basics of PWV AND Alx MEASUREMENT
This section describes the basics of calculating Pulse Wave Velocity (PWV) and Augmentation Index (AlIx) [46].
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Fig. 2. The illustration of PWV and Alx measurement, pulse wave dynamics, and skin displacement. (a) shows the two-point
measurement setup for PWV, where AL is the distance between two arterial sites. (b) illustrates the pulse waveform, including
the forward and backward wave components, and (c) shows how Alx is calculated from the waveform peaks. (d) depicts the
multi-stage skin displacements that occur during one cardiac cycle, corresponding to the wave propagation stages.

3.1 Calculating PWV

As shown in Fig. 2(a), PWYV is clinically defined as the speed at which pressure waves, generated by the heart
during systolic ejection, propagate along the arterial walls. It is calculated as:

PWV = AL 1
A M
where AL is the distance between two arterial sites (Site 1 and Site 2), which is obtained using tape measures to
measure the surface (epidermal) distance along the body. At represents the Pulse Wave Transit Time (PWTT),
defined as the time delay between the arrival of the same wavefront of the pulse pressure wave at the two sites.

PWYV is a widely recognized indicator of arterial stiffness [46], as its value is directly influenced by the
elasticity of the vascular walls and positively correlated with the degree of arteriosclerosis. For example, a
healthy PWV measured between the neck and wrist typically falls within the range of 4-8 m/s [7, 62]. Values
exceeding this range suggest reduced arterial elasticity and are associated with an elevated risk of cardiovascular
disease [5, 46]. An elevated PWYV is primarily indicative of increased arterial stiffness when assessed through
repeated measurements within the same individual [46, 60, 62]. Due to its reliability and repeatability, PWV is
considered the “gold standard” for non-invasive assessment of arterial stiffness [46, 60].

3.2 Calculating Alx
As illustrated in Fig. 2(c), Alx is clinically defined as the ratio between the amplitude of the backward wave and
the forward wave in a single cardiac cycle:

Alx= Dy 100%, )
hy

where h, and hy are the peak heights of the backward and forward waves, respectively, within the same cycle.
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Fig. 3. Overview of our proposed system.

Alx is a non-invasive marker of arterial stiffness and wave reflection with strong clinical relevance. It reflects
arterial function and predicts cardiovascular events. Higher Alx indicates stiffer arteries, stronger backward
waves, and greater cardiac load [8, 44]. In healthy individuals aged 20-30, Alx typically remains below 15%.
Chronically elevated Alx may increase cardiac workload and harm organs like the kidneys [55]. Additionally, Alx
is sensitive to changes in vascular elasticity and can more effectively reflect pharmacological effects than blood
pressure or PWYV, thereby supporting clinicians in optimizing therapeutic strategies [8].

4 UNDERSTANDING PRESSURE PULSES AND SKIN DISPLACEMENT

As illustrated in Fig. 2(a), pulse waves are generated by the heart and propagate through the arterial system.
During each cardiac cycle, the heart contracts, opening the aortic valve and allowing blood to flow from the left
ventricle into the aorta. As the resulting forward wave travels along the arterial walls, it encounters anatomical
features such as vascular bifurcations, which reflect part of the wave and produce a backward wave. The pressure
pulse waveform is thus formed by the superposition of these forward and backward waves, as depicted in Fig. 2(b).
In clinical settings, these waveforms are typically measured using Atherosclerosis detectors or oscillometric cuffs,
which detect pressure changes at specific arterial sites such as the carotid or radial artery.

From Pressure Pulse Waveform to skin displacement Waveform. Given the elastic nature of blood
vessels [16], the vascular wall expands and contracts in response to changing flow dynamics during the cardiac
cycle. This leads to continuous variations in vessel diameter and volume. Because most arteries are located
superficially, around 10 mm beneath the skin [18, 40], and are surrounded by soft, elastic tissues, the mechanical
force from arterial wall motion is transmitted to the surrounding tissues, inducing their displacement [40].

Fig. 2(d) further emulates skin displacements at various stages of the pressure pulse waveform shown in
Fig. 2(b). (i) Stage 1 to Stage 2: When the heart contracts and ejects blood, the resulting forward wave rapidly
dilates the vessel wall at the measurement site. This dilation pushes the overlying tissues outward, producing
an upward displacement. (ii) Stage 2 to Stage 3: As the forward wave passes, the vessel gradually returns to its
resting state, and the surrounding tissue undergoes downward displacement due to elastic recoil. (iii) Stage 3 to
Stage 4: When the backward wave reaches the same site, it induces another, smaller dilation of the vessel wall,
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Fig. 4. Comparison between phase-based vs our Doppler-based displacement estimation. (a) Experiment setup showing the
speaker and microphone positioned above the skin surface to sense displacement caused by underlying tissue oscillation.
(b) Displacement estimated using the phase-based method, showing noisy and non-periodic patterns. (c) Displacement
estimated using our Doppler-based method, revealing clean, periodic waveforms synchronized with cardiac cycles.

resulting in a weaker upward displacement of the tissue. (iv) Stage 4 to Stage 5: As the backward wave dissipates,
the tissue returns to its baseline position, completing the cycle and preparing for the next cardiac event.

This sequence of displacements forms an oscillatory tissue motion pattern that is synchronized with the cardiac
cycle. Rather than directly measuring pressure waveforms, our approach repurposes earphones as a SONAR
system to estimate displacement waveforms generated by subtle tissue oscillations as the pulse wave propagates
through the arteries. These displacement signals are captured and visualized as Acoustoscillogram (AOG) signals,
which reflect the mechanical response of tissue to the underlying arterial pressure wave.

5 Our Approach
5.1 System Overview

Fig. 3 presents an overview of our system, which enables non-invasive arterial health monitoring using commodity
earphones with a mobile device. The system consists of three main stages: interactive setup, data processing,
and clinical metric estimation. In the interactive setup stage, users begin by selecting measurement parameters
such as transmission frequency. They then attach and adjust the sensing devices (earphones) at two arterial sites,
e.g., the neck and wrist, following in-app guidance. Once the setup is complete, the mobile application emits
the acoustic signal and receives the reflected signal to initiate data collection. During the data processing stage,
the collected audio signals undergo several steps. A bandpass filter removes unwanted frequency components,
followed by signal separation based on Orthogonal Frequency Division Multiplexing. Doppler shifts are then
calculated from the reflected signals, which are used to estimate the AOG signals. Then a lightweight neural
network performs a real-time signal quality assessment. If the signal is confirmed to be a clear and reliable AOG
signal, the system proceeds to the final stage. Otherwise, users are prompted to adjust the device placement and
repeat the process. In the final clinical metric estimation stage, the system computes PWV and Alx using the
estimated AOG signals. These metrics are then displayed in the app interface, offering users an accessible and
affordable method for continuous cardiovascular monitoring.

5.2 Estimating AOG Signals

In this section, we present how we estimate subtle skin displacements induced by tissue oscillations, i.e., AOG
signals, in the presence of strong self-interference.

5.2.1 Acoustic Sensing Principle. Continuous wave signals are widely adopted for extracting subtle displacements
in acoustic sensing systems due to its simplicity and ability to preserve phase information [59]. As shown in
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Fig. 4(a), the earphone’s speaker continuously emits single-tone sinusoidal signals, which can be denoted as:
s(t) = Acos(2xft), (3)

where A represents the amplitude, and f denotes the frequency of the transmitted acoustic signals. The signals
reflect from the skin and are then captured by the microphone. By analyzing the reflected signals, we can extract
fine-grained displacement information caused by tissue oscillations.

5.2.2  Limitations in Prior Studies. To estimate displacement from subtle movements, prior studies [59, 66] adopt
a phase-based method that leverages the coherent nature of acoustic signals transmitted and received by the
same device. These systems down-convert received signals to a complex baseband using a coherent detector and
tracks phase variations over time, which correspond to changes in path length between the moving target and
the device. However, as illustrated in Fig. 4(b), this approach is susceptible to strong self-interference, i.e., signals
that travel directly from the speaker to the microphone without interacting with skin. These direct-path signals
arrive nearly simultaneously with the weaker skin reflections but at significantly higher intensity, effectively
masking the subtle displacements that the system aims to detect.

5.2.3 Doppler shift-based Displacement Estimation. Instead of directly calculating displacement from phase
values, we estimate skin displacement by first extracting the Doppler shift and then deriving velocity and
displacement. The key insight is that, since there is no relative motion between the speaker and microphone,
the self-interference signal traveling directly through air does not induce any Doppler shift. This characteristic
enables the separation of static self-interference from dynamic reflections caused by tissue oscillations, thereby
improving the robustness and accuracy of displacement estimation.

The Doppler shift refers to the change in frequency of a received signal caused by the relative motion between
the acoustic device and the reflecting surface [36, 38]. Suppose that the Doppler shift caused by tissue oscillation
is fy, the received signal can be modeled as:

s'(t) = A’ cos (2nft + ¢(1)), 4)

where A’ is the attenuated amplitude, and ¢(t) = 27 f;t is a time-varying phase component due to motion. To
compute the Doppler shift f;, we apply the Hilbert transform to obtain the orthogonal (imaginary) component of
the original reflect signal §’(¢). Then we compute the instantaneous phase ¢’(t) of the received signals as:

§'(t))
s'(0)]
Due to the periodic nature of the arctangent function, the resulting phase may exhibit abrupt 2 discontinuities,
which is commonly referred to as phase wrapping. These discontinuities can introduce spurious high-frequency
components when directly differentiating the wrapped phase to compute the instantaneous frequency. To address
this, we apply phase unwrapping, which adjusts the phase by adding or subtracting 27 whenever a jump
greater than r is detected, thereby ensuring a smooth and continuous phase trajectory over time. Finally, the
instantaneous frequency f”(t) is obtained by differentiating the unwrapped phase with respect to time:
1 dg'(t)

fry=og == (6)

The Doppler shift is computed as the deviation from the original carrier frequency f, given by f7(t) = f'(t) - f.
To isolate the relevant heart-induced motion, we apply a low-pass filter to f(t), focusing on components typically
below 5 Hz. Then the instantaneous velocity v’ (¢) of skin surface is computed as:

:]Z(t)Xc

2f
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an audio splitter. Band-pass FIR filters are then applied to separate signals from the two arterial sites.

.. Cardiac cycle
o —

. g Q

zos v b4 aooa £
5} ! " ] @
<) n " Iy n n i o
© 04 n 1 I n n N «©
> 7 ] i L n I nl %
£ ! it I (! ) 5
< 027 i Uy n n " . =
] AU LA ALY ks AR (ch i~
TR L HC A R 4 (i [
N I |!|‘\ U W 1P RS o ARG LA A B -
© LRt e T L AT Q
£-0.2 ! X L R T ! ! e
S \ v i . M [~ = wrist g
z 0.4 Neck S
0 1 2 3 4 5 .

Time (s)
(a) Normalized skin velocity. (b) Normalized skin displacement (AOG signals).

Fig. 6. The sensing results at two arterial sites, i.e., wrist and neck.

where c is the speed of sound in air (approximately 343 m/s), and the factor of 2 accounts for the round-trip
propagation between the device and the reflecting surface. To obtain a more reliable representation of tissue
oscillation, we consider displacement over an entire cardiac cycle as a more robust metric. After obtaining the
instantaneous velocity, the displacement r(t) at time ¢ is computed by integrating the velocity over time:

r(t) =/tv'(r) dr, (8)

to
where t; denotes the initial time, and v’ () represents the instantaneous velocity at time 7. As shown in Fig. 4(c),
our method clearly captures skin displacement induced by underlying tissue oscillations, producing a clean and
periodic waveform aligned with cardiac cycles, and demonstrating improved signal clarity and robustness.

5.3 Enabling Two-point Measurements

To compute PWV, AOG signals must be collected from two arterial sites, such as the neck and wrist, by placing
separate pairs of speakers and microphones at each location. However, as illustrated in Fig. 5(a), the standard
3.5mm TRRS (Tip-Ring-Ring-Sleeve) audio jack configuration used in commodity earphones presents a key
limitation. In this configuration, the tip and first ring are used for left and right audio output, the second ring
serves as a shared ground, and the sleeve is dedicated to a single line-in microphone input. As a result, most
earphones support only one microphone channel, making it infeasible to simultaneously record independent
acoustic reflections from two sites using a single pair of earphones.

To address this limitation, we propose a hardware-software co-design approach. On the hardware side, as
illustrated in Fig. 5(b), we connect two pairs of earphones to a commodity audio splitter [19], where each pair
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Fig. 7. The hardware and software prototypes of our system. (a) Front view of the commercial earphone with 3D-printed
enclosure and adjustable band; (b) Rear view with integrated speaker and microphone; (c) Mobile app showing real-time
waveforms, controls, and PWV/Alx results; (d) Built-in user instructions in the app.

includes two speakers and one microphone. The splitter is then plugged into a smartphone directly or via a
USB-C adapter. While this setup enables two microphones to operate simultaneously, the signals are still merged
into a single input channel on the smartphone due to audio hardware constraints [12, 17, 51, 57].

To separate these signals, we introduce a software solution based on Orthogonal Frequency Division Multi-
plexing (OFDM). As illustrated in Fig. 5(b), we design the transmitted acoustic signals as two distinct single-tone
waveforms: one at frequency f; modulated onto the left audio channel, and another at frequency f, modulated
onto the right channel of the splitter. A sufficient frequency gap between f; and f; is maintained to avoid
aliasing and ensure signal separability. These two signals are simultaneously transmitted through two pairs of
earphones placed at different arterial sites. The reflections from surrounding skins at both sites are captured by
the respective microphones and mixed into a single input channel on the smartphone. To separate the individual
signals corresponding to each transmission frequency, we apply band-pass FIR filters with a cutoff range of [f; — 5
Hz, fi +5 Hz] and [f> — 5 Hz, f> + 5 Hz], respectively. The separated signals are then independently processed to
estimate AOG signals from each arterial site. Fig. 6 shows the the normalized skin velocity and displacement
captured at the wrist and neck after applying our signal separation process. These results demonstrate the ability
of our system to simultaneously and independently monitor tissue oscillations at multiple arterial locations,
enabling accurate two-point sensing for PWV computation.
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5.4 Mobile Application and Signal Matching

Accurate artery localization is essential for reliable signal acquisition, but it remains a major challenge, especially
for untrained users. While arteries are near the skin surface, their pulsation-induced displacements are extremely
subtle and often obscured by tissue damping, particularly in individuals with higher body fat.

To address this, we developed a mobile application that provides real-time interactive feedback to guide users
during arterial health measurements. To enhance usability and ensure consistent placement, we designed a
3D-printed enclosure that integrates both the speaker and microphone from a standard earphone and attaches to
an adjustable band, as illustrated in Fig. 7(a) and Fig. 7(b).

5.4.1 Mobile Application. As shown in Fig. 7(c), we developed a mobile app to help with arterial localization and
display measurement results. It guides users through sensor placement and parameter setup, with both text- and
video-based instructions available in the built-in Instruction module (Fig. 7(d)). Upon pressing the “Start” button,
the system begins emitting acoustic signals through the speakers and simultaneously records reflections via the
microphones. The acquired data is processed directly on the smartphone, with real-time displacement waveforms
from both sites visualized in the interface. To assess signal quality, we implement a simple convolutional neural
network that evaluates the characteristic patterns of the AOG signals and determines whether they are suitable
for computing PWV and Alx. If the signal is valid, a green indicator confirms correct positioning. If no clear
arterial signals are detected due to misalignment or motion artifacts, the indicator remains gray, prompting the
user to adjust the device and retry until the correct artery site is found.

5.4.2  Signal Quality Assessment. As illustrated in Fig. 8, misalignment with the arterial site leads to the collection
of random or noisy signals instead of valid AOG waveforms. Additionally, motion artifacts such as muscle
vibrations during measurement can further distort the signal and reduce its reliability.

To ensure signal quality, we leverage a key characteristic of AOG signals—the presence of a pronounced dicrotic
notch [20], which reflects the backward wave component and serves as a distinctive feature (see Fig.4(c)). Inspired
by the approach in [24], we design a lightweight one-dimensional convolutional neural network (1D-CNN), called
NotchCNN, optimized for time-series signal classification on mobile devices. NotchCNN performs real-time
validation by detecting whether a clear and consistent AOG pattern is present, enabling robust signal quality
assessment during measurement.

The complete architecture of NotchCNN is shown in Fig. 8. It consists of three sequential 1D convolutional
layers, each followed by batch normalization, ReLU activation, and max pooling. The first layer (Conv1) takes
a single-channel input and applies 32 filters with a kernel size of 7 to detect basic waveform features, such as
rising/falling edges and the shape of the systolic peak. The second layer (Conv2) builds on these features using
64 filters of size 5 to learn compound structures involving both the systolic peak and the dicrotic notch. The
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Table 2. List of the off-the-shelf smartphones and 3.5mm earphones.

Smartphone Earphone
1 Samsung S9 1 | Sony MDR-EX15AP
2 | Motorola Edge 2020 | 2 Sephia SP3060
3 Pixel 4 3 Apple Earpods
4 Pixel 8 4 JBL TUNE 110
5 Samsung S22 5 Sennheiser CX80S
6 Sony Xperia 10 6 Amazon Basics

third layer (Conv3) uses 128 filters with a kernel size of 3 to extract higher-level features related to waveform
periodicity and overall morphology. Each convolutional stage includes batch normalization to stabilize training
and max pooling (kernel size 2) to reduce temporal resolution.

After the convolutional layers, a global average pooling layer (GAP) compresses the temporal dimension
into a 128-dimensional feature vector. A dropout layer (rate 0.3) helps prevent overfitting, and ReLU is used as
the activation function throughout. Finally, two fully connected layers reduce the feature vector from 128 to
64, then to 2 output logits for binary classification. This architecture efficiently captures both local and global
characteristics of the AOG signal, making it well-suited for real-time signal quality assessment on mobile devices.

In addition, we adopt the cross-entropy loss function [35] for binary classification. The final layer of the network
outputs a two-dimensional logit vector z = [z, z1] for each input signal. The probability of class ¢ € {0,1} is
computed using the softmax function:

exp(zc) )
exp(zo) + exp(z1)’
where p, is the predicted probability for class ¢, and the ground truth label is represented by an integer y € {0, 1}.
Since this is a binary classification task, the predicted probabilities satisfy py + p1 = 1. Using a one-hot encoding
scheme, we define y. = 1if ¢ is the correct class, and y. = 0 otherwise. The cross-entropy loss is then defined as:

Pe =

1
£=-"y. log(pe). (10)
c=0

5.5 Clinical Metric Estimation

After acquiring AOG signals from two measurement sites, our system computes PWV using the method described
in Sec. 3.1. Specifically, it identifies the systolic peaks within the same cardiac cycle at each site and calculates the
interval as the time difference between these peaks, as illustrated in Fig. 6(b). To enhance robustness and reduce
variability, the system averages PWV values over five consecutive cardiac cycles.

For Alx estimation, the system follows the approach outlined in Sec. 3.2, using the AOG signal collected from
the radial artery. Likewise, our system computes Alx across five consecutive cardiac cycles and reports the
average value to improve measurement reliability.

6 IMPLEMENTATION

We implement a proof-of-concept system using commodity smartphone and earphones equipped with a built-in
microphone. We further test various combinations of different smartphone and earphone brands, as shown in
Table 2. Signal processing and analysis are performed using MATLAB on a MacBook Pro equipped with an M2
CPU and 32GB of memory. We also develop an Android app as shown in Fig. 7(c) to process the data in real time.
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(a) The illustration of our device and setup. (b) The measurement from our device.  (c) The measurement from the medical device.

Fig. 9. The illustration of the experiment setup.

In our experiments, unless otherwise specified, the default configuration consists of a Motorola Edge 2020
smartphone and two Sennheiser CX80S earphones. The OFDM signal used combines 5 kHz and 7 kHz frequencies.
A headphone splitter is employed to connect the same pair of earphones to the smartphone, enabling simultaneous
data collection from two measurement sites, as shown in Fig. 9(a) and Fig. 9(b).

Ground-truth. We use the dedicated medical device Chioy VBP-9 to obtain the ground truth, as shown in
Fig. 9(c). Chioy VBP-9 is widely recognized for its clinical accuracy, exhibiting a correlation of over 98% with
invasive catheter-based measurements. It determines PWV by deploying tension sensors at two anatomical
locations—the arm (brachial artery) and the ankle—and simultaneously capturing pulse wave signals. However,
due to differences in vascular elasticity and blood pressure transmission pathways across these segments, direct
comparisons with other arterial paths are not straightforward. Based on clinical guidelines from YAMASHINA
et al. [63], the measured brachial-ankle PWYV is typically multiplied by a factor of 0.56 to approximate the PWV
value between the carotid and radial arteries (neck to wrist). Alx is also derived from the same pulse waveform.

7 EVALUATION

We first conduct a field study in clinic settings to evaluate the overall system performance (Sec. 7.1). We then run
a batch of micro-benchmarks to understand the impact of various factors (e.g., ambient noise, subject diversity)
on system performance (Sec. 7.2). Finally, we conducted a user study to evaluate the usability of our system
among untrained and non-medical users (Sec. 7.3).

Evaluation Metrics. We employ both Root Mean Square Error (RMSE) and the coefficient of determination (R?
score) to evaluate the performance of our AOG-based system against the ground truth. To maintain consistency
across all experiments, unless otherwise specified, we use 5 kHz and 7 kHz OFDM signals with a voltage gain
of 80 as the default acoustic configuration. Specifically, the 5 kHz signal is assigned to the left audio channel
and attached to the wrist, while the 7 kHz signal is assigned to the right channel and attached to the neck. The
sampling frequency is set to 48 kHz, and each session involves continuous data collection lasting 30 seconds. To
ensure reliability, every experiment is repeated five times.
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Fig. 10. An illustration of PWV and Alx measurements against the ground-truth. The PWV higher than 8 m/s (highlighted in
gray) or the Alx higher than 20% indicates the higher likelihood of cardiovascular diseases [5, 29].

7.1 Overall System Performance

We recruit 32 individuals from the hospital for system evaluation. The cohort consisted of 10 individuals aged
20-29, 7 aged 30-39, 5 aged 40-49, 5 aged 50-59, and 5 aged 60-70. Among them, 17 were male, and the remaining 15
were female. A retrospective review of their clinical records reveals that 6 participants have cardiovascular disease-
related conditions, providing a diverse sample for validating the system under both healthy and pathological
scenarios. While the experiments are primarily conducted in a hospital setting to allow comparison with dedicated
medical devices, we believe the results are also applicable in home environments. The average ambient noise
level during the experiments is around 50 dB. All experimental procedures are approved by the Institutional
Review Board (IRB) at University of Massachusetts Amherst.

7.1.1  PWVand Alx Estimation Accuracy. Fig. 10(a) illustrates the comparison between the estimated PWV and the
ground truth values. Each data point corresponds to a measurement from an individual, totaling 32 measurements,
with measurements from six individuals diagnosed with cardiovascular diseases indicated by green circles. From
this figure, we observe that our method achieves a mean absolute error (MAE) of less than 0.5 m/s across 32
individuals. These results remain well within the clinically acceptable error margin for PWV measurements (<
1 m/s) [10, 34]. We further examine system performance separately for 26 healthy individuals and six individuals
with cardiovascular diseases. Our system achieved an RMSE of 0.55 m/s among healthy individuals, with a slight
increase to 0.72 m/s for individuals with cardiovascular diseases. Nevertheless, all values measured within these
two groups are within the clinically acceptable range. These results demonstrate the high accuracy of our system.

Fig. 10(b) presents the results for Alx estimation. From this figure, we observe that our method achieves a MAE
of less than 3.3%, satisfying established medical standards and remaining well within the clinically acceptable
error range for Alx estimation (less than 6%) [10, 34]. The corresponding RMSE and R? values further demonstrate
the accuracy and reliability of our Alx predictions. We also examine system performance separately for 26 healthy
individuals and six individuals with cardiovascular diseases. Our system achieves an RMSE of 3.18% among
healthy individuals, with a slight increase to 5.07% for individuals with cardiovascular diseases.

The observed increase in RMSE for both PWV and Alx between healthy individuals and those with cardio-
vascular diseases can be attributed to underlying physiological changes. Abnormally high PWV and Alx are
generally indicative of conditions such as arteriosclerosis. Cardiovascular diseases often lead to arteriosclerosis,
which not only elevates the result but also reduces arterial dilation in response to the heartbeat. This diminished

*The IRB number is 6006.
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arterial elasticity, in turn, affects the heartbeat waveform captured by our system at a single measurement site.
Moreover, the growth in RMSE is particularly evident among elderly individuals. This can be further attributed
to increased skin laxity with age, which compromises the stability of device-skin contact and alignment with the
artery, ultimately leading to higher measurement errors.

7.1.2  Measurement Stability. Measurement stability is a key performance metric for any physiological monitoring
system. To assess the stability of our system, we recruited six volunteers, each of whom performed five PWV
measurements, with 10-minute intervals between tests. Throughout the testing period, participants were instructed
to remain relatively at rest so that their PWVs are stable. Hence a stable device should report consistent PWV
readings across five measurement sessions for each participant. We evaluate the measurement stability using
Relative Standard Deviation (RSD). Fig. 11 presents the RSD results for each volunteer. The findings demonstrate
the high stability of our system, with individual RSD values ranging from as low as 0.42% to as high as 4.54%. The
RSD values for Alx, on the other hand, are higher, ranging from 8.28% to 14.86%. These RSD values for Alx also
meet the allowable limit of 20% for bio-analytical method validation [3].

One may wonder why there is a performance gap between the RSD of PWV and that of Alx. PWV is determined
by measuring the appearance time of the systolic peak which is relatively stable and easy to detect. Hence its RSD
is relatively small. In contrast, Alx is calculated as the amplitude ratio of the dicrotic notch to the systolic peak.
During the measurement process, external factors such as human movement can distort the waveform, and the
dicrotic notch, which is inherently weaker, is particularly vulnerable to these disturbances. As a result, the values
used for Alx calculation are more easily susceptible to body motions, leading to more significant variations.

7.2 Micro-benchmarks

We conducted a batch of micro-benchmarks to assess the impact of various factors on our system performance.

7.2.1 Impact of signal volume. We first assess the impact of signal volume on PWV measurement accuracy. We
control the signal volume by varying the voltage gain from 70 to 105. Values outside this range fail to produce
detectable AOG signals—either due to exceeding the hardware’s effective operating limit at high gain or due
to insufficient excitation at low gain. The testing results are presented in Fig. 12. We observed that our system
achieves the highest PWV measurement accuracy when the voltage gain is set to 80. As the voltage gain grows, the
speaker tends to produce self-excited vibrations, introducing strong noise that degrades measurement accuracy.
On the other hand, when the voltage gain is too low, the already weak reflection signal becomes more susceptible
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Fig. 13. AOG Waveforms of Elderly Individuals: CVD vs. Healthy.

to environmental and system noise, also reducing accuracy. We adopt 80 voltage gain as our default setting for
all the other experiments.

7.2.2 Impact of subject diversity. Next, we assess the system performance across subject groups categorized
by BMI, gender, age, skin tone, and height, based on 32 individuals from the hospital. Fig. 13 shows the AOG
waveform results for three different subjects.

We have three observations from the result shown in Table 3:

First, AOG consistently provides accurate estimations of PWV and Alx across diverse demographic groups.
The average MAE for PWV remains below 0.8 m/s, while the average MAE for Alx is under 7%.

Second, BMI has a significant impact on system performance. Specifically, for PWV estimation, when BMI is
less than 25, the MAE is 0.33 m/s. As BMI increases, the MAE for PWYV also rises. Notably, when BMI reaches
30, the MAE increases to 0.73 m/s. A similar trend is observed for Alx estimation. This is because a higher
BMI typically corresponds to greater adipose tissue, which dampens arterial pulsations and weakens tissue
oscillations, thereby reducing measurement accuracy.

Third, we observe a slight decline in accuracy among older individuals. For example, when participants are
younger than 30 years old, the MAE for PWV is 0.37 m/s. For participants aged 30-60 years, the MAE increases
to 0.48 m/s, and for those older than 60 years, it further rises to 0.87 m/s. Representative AOG waveforms are
shown in Fig. 13(b) for a healthy elderly individual and in Fig. 13(a) for an elderly individual with CVD. Notably,
the MAE exceeds 0.5 m/s for participants older than 30 years. A similar trend is observed for Alx estimation.
This decline in accuracy may be attributed to increased skin laxity with age, which affects the stability of
device-skin contact and alignment with the artery, leading to higher measurement errors. Furthermore, by
comparing Fig. 13(b) and Fig. 13(a), we observe that the dicrotic notch in the waveform of the CVD individual is
not clearly visible. This is because, in elderly individuals with CVD, the arterial walls become thicker and stiffer,
leading to reduced vascular compliance and elevated PWV. As a result, backward waves return earlier—often
before the heart has completed contraction or just prior to valve closure—overlapping with the forward wave.
Consequently, the dicrotic notch becomes less distinct or appears blunted in the AOG waveform [46].
Fourth, height and skin tone do not appear to noticeably affect measurement accuracy. The MAE for PWV
remains below 0.5 m/s, and the MAE for Alx remains below 4.5% across different heights and skin tones,
indicating that variations in these factors do not significantly influence the measurement results.

Finally, to evaluate the impact of posture, we invite four participants in our clinical studies and measure the

MAE of their PWV and Alx under three different postural conditions: standing, sitting, and lying. We found that
standing introduces greater error, with the MAE for PWV reaching 0.62 m/s. This is due to gravitational effects
that alter blood flow dynamics, leading to increased peripheral vascular resistance and decreased central aortic
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Table 3. The comparison of subject diversity.

Factor

MAE BMI Gender Age Skin tone Height Posture
25 25-30 30 Male Female 30yrs 30-60yrs 60yrs Lighter Common Darker 165cm 165-180 cm 180 cm  Standing  Sitting lying
PWV (m/s) | 0.33 049 0.73 | 0.42 0.46 0.37 0.48 0.87 0.44 0.47 0.41 0.44 0.42 0.44 0.62 0.40 0.39
Alx (%) 379 424 584 | 428 4.11 4.08 4.49 7.58 3.87 4.02 3.99 4.13 4.37 4.12 4.39 3.99 3.92

Average MAE = 0.600 m/s Average MAE = 4.71%
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Fig. 14. The illustration of different equipment combination.

pressure [48]. In contrast, the errors observed in sitting and lying positions are comparable, with only a 0.01 m/s
difference. A similar trend is observed for Alx estimation. This is because the distance from the carotid artery to
the radial artery is relatively short compared to other measurement paths, such as from the ankle-brachial artery
to the radial artery. Therefore, when sitting, the influence of gravitational acceleration is not significant. Based
on these experiment results, we recommend measuring the PVW and Alx either while seated or lying down.

7.2.3 Impact of different combinations. To evaluate the impact of different equipment combinations, we tested
various pairings of smartphones and earphones, as shown in Table 2. The results are presented in Fig. 14. We
observed that the error across all device combinations exhibited only minor variations. Specifically, the MAE for
PWYV was consistently less than 1 m/s, with an average MAE of 0.6 m/s. For Alx estimation, the MAFE remained
below 6%, with an average MAE of less than 4.71%, which meets the medical standards [10, 34]. Notably, when
using the same model of earphones with different smartphones, the results remained consistently similar. The
minor differences observed are primarily attributed to variations in the analog-to-digital converters (ADCs)
and digital-to-analog converters (DACs) across different smartphone models. However, variations appear when
comparing different earphone models paired with the same smartphone. The performance varies slightly: the
Sennheiser CX80S achieves the highest accuracy, with a difference from the ground truth of less than 0.4 m/s for
the MAE of PWYV and less than 5.5% for the MAE of Alx. In contrast, the Amazon Basics model exhibits the lowest
performance, with the MAE of PWV remaining under 1 m/s and the MAE of Alx under 6%. This discrepancy
can be attributed to differences in the frequency response curves of the earphones. Specifically, the Sennheiser
CX80S exhibits highly stable phase characteristics, which contribute significantly to its performance

7.2.4  Impact of ambient noise. We conduct experiments to evaluate the impact of ambient noise on system
performance. Specifically, we introduce three types of noise generated by different sources: human conversation
(58.1 dB), an air conditioner (70 dB), and a canteen environment (105 dB). Additionally, we play a chirp signal
ranging from 5 kHz to 7 kHz near the device as another form of noise. We observe that the PWV and Alx
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Fig. 16. Performance comparison of PWV estimation across different materials and measurement distances.
measurement errors under these noisy conditions are comparable to those measured in a quiet environment
(41.8 dB). This robustness is primarily because ambient noise frequencies are typically above 200 Hz, exceeding
the frequency range of physiological signals. Furthermore, our denoising module is specifically designed to
effectively eliminate high-frequency noise, thereby minimizing its impact on the measurements. In addition,
placing the device directly on the skin creates a relatively enclosed space, isolating measurement results and
further reduces susceptibility to external environmental influences.

7.2.5 Impact of hardware. The oscillation resolution of our device is impacted by the phase noise of the speaker.
To characterize this impact, we measure the phase noise of our device across the full frequency range from 1 kHz
to 22 kHz with a step size of 1 kHz. As shown in Fig. 15(a), we observe that the maximum phase noise occurs at 20
kHz, reaching approximately 0.001 Rad. This equals to % of a full oscillation cycle, which is sufficient to resolve
the oscillatory motion. This confirms that our system can operate effectively across the full frequency range.

Based on this evaluation, we select 5 kHz, the frequency with the lowest measured phase noise, as one of our
channels. To identify the optimal second channel frequency for two-tone operation, we test combinations of 5
kHz with other frequencies ranging from 1 kHz to 22 kHz. To avoid frequency aliasing and harmonic interference,
we exclude multiples of 5 kHz (i.e., 1 kHz, 5 kHz, 10 kHz, 15 kHz, and 20 kHz). The results of these frequency
combinations are shown in Fig. 15(b). We observe that due to manufacturing differences, the optimal phase noise
performance for the combination of 5 kHz and another frequency occurs when the second frequency lies between
4 kHz and 13 kHz. Among these, 7 kHz yields the lowest phase noise, reaching a minimum of 0.0012.
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Table 4. Comparison of results from our method at different measurement sites.
Estimation | Ground truth | Error
(m/s) (m/s) (m/s)
Neck-Wrist 5.67 5.97 0.30
Wrist-Ankle 9.93 10.66 0.73
Table 5. The results of long-term measurement.
Noofweek | 2 3 4 5 6 7 8 o 10 1 12 13 14 15 16
Value
PWV (m/s) 635 616 636 613 633 632 615 638 619 613 634 621 642 607 645 6.06
Alx (%) 1365 1166 1359 1162 1354 1377 1155 1173 1356 1164 1363 1159 1437 1092 1446 10.87
7.2.6 Impact of distance. In real-world scenarios, such as when patients with skin conditions perform self-checks

or when doctors examine individuals with skin ulcers or injuries, it is often impractical to attach the device
directly to the skin. We explore whether our system can support through-clothing or contactless measurement
while maintaining reliable accuracy. To do so, we conduct two experiments: one to assess the impact of different
fabric textures, and the other to examine the effect of varying distances between the device and the skin. In both
experiments, PWV values are used as the primary evaluation metric to quantify system performance.

Fig. 16(a) shows the results of our MAE for PWV measurements across various fabric textures, including
cotton, wool, gauze, nylon, and Gore-Tex. We find that gauze and cotton demonstrate higher accuracy, with MAE
values for PWV ranging from 0.24 to 0.32 m/s, as acoustic signals can easily penetrate these materials. In contrast,
Gore-Tex exhibits lower accuracy, with MAE values for PWV ranging from 0.57 to 0.69 m/s, likely because it
reflects a portion of the acoustic signal. Fig. 16(b) shows the MAE of PWV measurements when measuring at
varying distances between the device and the skin, specifically at 1 cm, 2 cm, 3 cm, and 4 cm. As shown in
Fig. 16(b), even at a distance of 4 cm, the error is below 0.8 m/s, which satisfies the measurement requirements.

7.2.7 Impact of different measurement sites. We deploy the device on various arterial sites beyond the neck
and wrist. These included the dorsal artery of the foot, the femoral artery, and the temporal artery near the
ear. Measurements at these additional sites also yield valid PWYV values. However, these values differ due to
variations in measurement distances and the involvement of different types of arteries—each with distinct elastic
properties [46]. Therefore, to validate our system’s performance, we measured the PWV between the neck (carotid
artery) and wrist (radial artery), as well as between the wrist (radial artery) and ankle (posterior tibial artery),
and compared the results against ground truth measurements for the same individuals. The results are presented
in Table 4. Regardless of the measurement location, the estimation errors remained below 7%.

7.2.8 Impact of Long-term measurement. To assess the stability of long-term measurements, we tracked a single
user over four months, collecting PWV and Alx data every Sunday night using our system. Results are shown
in Table 5. During this period, PWV error fluctuated by less than 0.2 m/s, and Alx error by less than 1.8%,
demonstrating the robustness and consistency of the proposed system.

7.3 User Study

To evaluate the usability and user experience of our system for untrained users, we conducted a post-task
questionnaire including both Likert-scale items and open-ended questions. As noted by Nielsen and Landauer [47],
testing with 5-8 participants is sufficient to uncover approximately 85% of usability issues in a prototype. Following
this guideline, our study involved six participants (4 male, 2 female, aged 20-60) with diverse backgrounds, none
of whom had any prior medical experience. As shown in Fig. 17, participants rated the system’s usability, comfort,
ease of first use, and overall satisfaction. The results indicate that untrained users were able to operate the system
effectively with minimal guidance, highlighting its practicality and user-friendliness for daily use. Specifically,
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Fig. 17. User study results. (a) Overall satisfaction scores (0 = not satisfied at all, 5 = extremely satisfied). (b) Number of
positioning adjustments needed. (c) Time taken to obtain the AOG signal on first use. (d) Comfort ratings reported by
participants (0 = very uncomfortable, 5 = extremely comfortable).

the overall satisfaction score was 4.5 out of 5, the average number of positioning adjustments was 4.7, the average
time to first successful use was 10.3 minutes, and the average comfort rating is 3.67. Additionally, two participants
suggested that the device could be made smaller since the 3D-printed enclosure was somewhat bulky and made
it difficult to adjust the position easily.

8 DISCUSSION

System Setup. To use our system, users need a tape measure to determine the distance required for PWV
calculation. This distance is measured along the body surface by subtracting the neck-to-heart distance from
the heart-to-wrist distance, following standard clinical practices for PWV estimation. In addition, users need
to fabricate a 3D-printed enclosure and obtain a wristband. The enclosure is low-cost (under $0.10), easy to
fabricate, and openly available online as an open-source design. The adjustable wristband, used to secure the
device, can be purchased on Amazon for about $1 [4]. The enclosure and band ensure that the earphone’s speaker
and microphone are properly aligned over the same arterial site. This setup enables untrained users to operate the
system independently. Additionally, we found that as long as proper alignment is maintained, simple alternatives
such as adhesive tape can be equally effective.

Custom Devices. Our evaluation revealed two limitations that can be addressed in future iterations. First,
the nozzle design of commodity earphones prevents the speaker from making direct contact with the skin,
which lowers the signal-to-noise ratio (SNR). Second, their large form factor hinders precise positioning at the
measurement site, thus reducing accuracy. To address these issues, we developed a low-cost (under $2) custom
sensor featuring an integrated printed circuit board (PCB) that combines both the microphone and speaker,
allowing for better skin contact and enhanced SNR. Compared to commodity earphones, the custom device
reduces the MAE in PWV estimation from 0.47 m/s to 0.40 m/s and in Alx estimation from 3.23% to 3.02%. Detailed
information about the hardware design and corresponding experimental results is provided in the Appendix.

Performance Improvement Strategies. Our experiments indicate that performance degrades for individuals
with higher BMI or older age. This is primarily due to physiological factors such as skin laxity and increased
subcutaneous fat, which dampen signal quality. To address this, maintaining firm contact between the earphone
and the skin is critical for accurate measurements. Additionally, taking multiple measurements and averaging the
results can improve reliability in daily use.

Potential Application. Prior studies have shown that systolic blood pressure scales with the square of pulse
wave velocity [11, 41]. Additionally, diastolic blood pressure can be estimated using a combined model that
incorporates both pulse wave velocity and the augmentation index [30]. These findings indicate that our system
has the potential to support blood pressure estimation. In future work, we plan to collect data from a diverse
population to further develop and validate this application.
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9 CONCLUSION

In this paper, we explore the feasibility of using acoustic sensing with low-cost wired earphones to monitor
arterial health by measuring Pulse Wave Velocity (PWV) and Augmentation Index (Alx). To achieve this, we
leverage Doppler shift to capture subtle skin displacements induced by arterial pulsation and construct the
corresponding Acoustoscillogram (AOG) waveform. To address the challenge of capturing AOG signals from two
measurement sites within the same cardiac cycle, we propose a hardware-software co-design. This involves using
two pairs of wired earphones with line-in microphones placed at different arterial sites, along with an Orthogonal
Frequency-Division Multiplexing (OFDM) strategy to separate the reflected signals for dual-site AOG extraction.
To enhance usability for individuals, we also developed a mobile application designed specifically to support
untrained users. We validate our system using clinical data from 32 participants, comparing the results against
measurements from a medical-grade reference device. Experimental results demonstrate that our system achieves
a PWV error of less than 0.5 m/s and an Alx error of less than 4%, satisfying established medical standards.
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(a) The photo of the customized sensor. (b) The schematics of the customized sensor.

Fig. 18. Illustration of our customized sensor design. (a) The photo of the assembled sensor, showing the integrated speaker
and microphone on a compact PCB. (b) The circuit schematic of the customized sensor, where two identical boards (left and
right) are connected via a shared microphone input and ground through a 3.5mm TRRS jack.

A Custom Sensor Hardware Design
A.1  Hardware Design

To streamline assembly and enable large-scale deployment, we designed a low-cost, earphone-style sensor. As
shown in Fig. 18(a), each customized printed circuit board (PCB) integrates a speaker and a microphone that are
widely used in commodity earphones. When two boards are connected via an audio splitter, our system supports
synchronized acquisition of reflected signals from two arterial sites.

Fig. 18(b) presents the circuit schematic of our custom sensor. Similar to our commodity earphone prototype,
we employ the TRRS (Tip-Ring-Ring-Sleeve) headphone interface standard, which provides four channels: left
audio, right audio, microphone, and ground. Each PCB implements a single speaker channel—one using the left
channel and the other the right—while both share a common microphone input.

The TRRS interface is traditionally intended for condenser microphones, which operate by superimposing
an AC audio signal onto a DC-biased line. In contrast, our system incorporates MEMS microphones equipped
with built-in preamplifiers, which require a stable DC power supply and output audio via a separate signal pin.
Consequently, integrating these microphones with the TRRS socket necessitates a signal adaptation circuit.

Directly connecting the MEMS microphone output to the TRRS microphone line is infeasible due to signal
interference on the DC-biased line. We address this challenge by interpreting it as an energy harvesting problem.
As depicted in Fig. 18(b), we implement a simple rectification and filtering circuit using a diode (D1) and two
4.7 uF capacitors (C2, C3), forming a passive energy harvester. The diode serves as a rectifier, while the capacitors
function as low-pass filters. Additional components, including a bypass capacitor (C4) and a DC-blocking capacitor
(C1), are incorporated in accordance with the MEMS microphone datasheet recommendations.

A 10 nF decoupling capacitor (C1) is used to isolate the AC signal from the DC bias, ensuring clean signal
transmission from the microphone. To suppress noise, a diode (RB1610S-40T18R) is placed at the microphone’s
Vpp terminal, preventing unwanted voltage fluctuations from feeding back into the smartphone. Additionally,
capacitors C2 and C3 are connected in parallel across the microphone terminals to stabilize low-frequency voltage
variations and absorb transient currents. A smaller capacitor (C4) is included to filter high-frequency noise
sources such as RF interference and switching power supply noise.
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A.2 The result of custom device
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(a) The estimation PWV vs the ground truth. (b) The estimation Alx vs the ground truth.

Fig. 19. An illustration of PWV and Alx measurements using the custom device compared to ground truth. The PWV higher
than 8 m/s (highlighted in gray) or the Alx higher than 20% indicates the higher likelihood of cardiovascular diseases [5, 29].

As shown in Fig. 19, we used our custom device to measure the same 32 individuals in order to compare its
performance with that of commodity earphones. The custom device reduced the mean absolute error (MAE) in
PWYV estimation from 0.47 m/s to 0.40 m/s and in Alx estimation from 3.23% to 3.02%. These results indicate that

the custom device outperforms commodity earphones, likely due to its higher signal-to-noise ratio (SNR) and
improved skin contact.
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