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Recent years have witnessed increasing attention from both academia and industry on contact-free acoustic sensing. Due to
the pervasiveness of audio devices and fine granularity of acoustic sensing, it has been applied in numerous fields, including
human-computer interaction and contact-free health sensing. Though promising, the limited working range hinders the wide
adoption of acoustic sensing in real life. To break the sensing range limit, we propose to deploy the acoustic device on a
moving platform (i.e., a robot) to support applications that require larger coverage and continuous sensing. In this paper,
we propose SonicBot, a system that enables contact-free acoustic sensing under device motion. We propose a sequence of
signal processing schemes to eliminate the impact of device motion and then obtain clean target movement information
that is previously overwhelmed by device movement. We implement SonicBot using commercial audio devices and conduct
extensive experiments to evaluate the performance of the proposed system. Experiment results show that our system can
achieve a median error of 1.11 𝑐𝑚 and 1.31𝑚𝑚 for coarse-grained and fine-grained tracking, respectively. To showcase the
applicability of our proposed system in real-world settings, we perform two field studies, including coarse-grained gesture
sensing and fine-grained respiration monitoring when the acoustic device moves along with a robot.
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1 INTRODUCTION
Acoustic sensing that extends the primary use of speakers and microphones from audio playing and voice-based
interaction to contact-free motion tracking has been gaining a tremendous amount of attention from both academia
and industry recently. Acoustic sensing exhibits numerous advantages including pervasiveness [26, 29, 48] and
�ne-grained sensing granularity [57, 60]. On one hand, speakers and microphones are essential components on a
variety of commodity devices in our daily life, including smartphones, smart speakers, smart TVs, etc. On the
other hand, owing to the inherent low propagation speed in the air (i.e., 340< •B), acoustic sensing can achieve
a �ner sensing granularity compared to other sensing modalities such as Wi-Fi sensing [30, 61, 65] and LoRa
sensing [62, 63]. Recent e�orts have successfully pushed the granularity of acoustic sensing from centimeter-level
to millimeter-level [14, 54, 64]. As a result, acoustic sensing has enabled diverse applications, ranging from
coarse-grained motion sensing such as human tracking [16] and gesture recognition [14, 25] to �ne-grained
activity sensing including �nger tracking [28, 57, 60], lip reading [47, 66, 67], respiration monitoring [43, 55, 56],
and eye blink detection [21].

Although promising, the limited range of acoustic sensing hinders its wide adoption in real life. For example, the
state-of-the-art acoustic sensing systems can only achieve a sensing range of 2< for respiration monitoring [55,56]
and 4.5< for gesture recognition [25]. The main reason is that signals experience large attenuation when re�ected
from a target and become much weaker than the direct path signals. Researchers have endeavored to address this
issue by employing microphone arrays [14, 55] and machine learning techniques [24, 25]. However, the sensing
range is still limited to a few meters.

To break the sensing range limitation, we seek to deploy the acoustic sensing device on a mobile platform (e.g., a
robot) to support applications that require larger coverage and continuous sensing, as shown in Fig. 1. For example,
healthcare robots nowadays play an increasingly important role in providing well-being to both patients and
caregivers [1, 3, 5, 23, 34, 36, 37, 41, 45, 50, 51]. The caregivers can remotely monitor the vital signs of patients in
a contact-free manner, which reduces their risk of exposure to infectious diseases such as COVID-19. Healthcare
robots can follow the elderly or patients to provide 24-hour continuous care and supervision. As essential
components of voice-based human-computer interaction [3, 5, 34, 36, 37], the built-in speakers and microphones
on healthcare robots can therefore be leveraged to provide �ne-grained human sensing in a contact-free manner.
Although most healthcare robots on the market [3, 36, 37] are equipped with other types of sensors such as
camera and LiDAR, these sensing modalities have their limitations on human activity sensing. LiDAR sensors on
robots are usually employed for detecting obstacles and identifying objects. While it can capture the shape of the
target, the range accuracy of LiDAR sensors is not high enough for �ne-grained sensing. For example, the range
error of LiDAR sensors is usually 1�2% of the distance [44]. It indicates that, if the target is 2< from the robot,
the range error would be 2 to 42<, which is too large for respiration sensing with a subtle chest displacement of
0.52<. Cameras are another common components of robots for detecting surrounding objects. However, due to
privacy concerns, people are usually unwilling to be continuously monitored by cameras. Compared with these
sensing modalities, acoustic signals can achieve �ne-grained sensing on the scale of sub-millimeter and do not
raise privacy concerns. Therefore, we believe acoustic sensing well complements existing sensing modalities.
For example, a robot can �rst identify the human target with the help of LiDAR, and then initiate respiration
monitoring using acoustic sensing when it approaches the target.

The fundamental principle of acoustic sensing is that the target movement a�ects acoustic signals re�ected
from the target, so we can obtain target movement information by analyzing signal variations. Yet, current
acoustic sensing is based on a critical assumption that the sensing device remains stationary [9, 19, 38, 43, 55, 56].
On the contrary, acoustic sensing under device motion (e.g., the acoustic device moves with a robot) is entirely
di�erent from sensing with a stationary device. The reason is that when the acoustic device is stationary, the
signal variations are purely caused by target movements. However, the signal variations contain both target and
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(a) The stationary scenario. (b) The device motion scenario.

Fig. 1. Prior studies utilize stationary devices for contact-free acoustic sensing, resulting in a limited sensing range (green
area). Our system aims at breaking the limits of acoustic sensing range by employing a moving robot to achieve a larger
coverage and continuous sensing.

device movement information when the device is moving. Hence, we face critical challenges to make acoustic
sensing work under device motion.

The �rst challenge is how to extract clean target movement information when the signal variations are
caused by both target and device movements. Device movements can easily overwhelm target movements. One
straightforward way to address device motion is to introduce motion sensors such as inertial measurement
units (IMU) to capture the information of device motion. However, IMU-based solutions su�er from severe
accumulated errors and bring additional data fusion burden [7]. Therefore, we aim to seek a solution without
requiring any additional sensors.

To address this challenge, we leverage a static object in the environment as a reference to cancel out the
e�ect of device motion. The key intuition is that the signals re�ected from a reference1 only contain the device
movement information. In contrast, the signals re�ected from the target contain both device and target movement
information. We can then eliminate the e�ect of device motion by subtracting the signal variation in the reference
re�ection (containing only device movement) from that in the target re�ection (containing both device and target
movements) to extract clean target movement information.

In this paper, we employ the chirp signal design to separate signal re�ections from the target and reference.
The chirp signal design has a �ne resolution (e.g., 4.252< for a signal bandwidth of 4:�I ) in resolving re�ectors
located at di�erent distances. Re�ectors separated by more than 4.252< will be placed into di�erent range bins.
In this case, we can obtain the signal re�ection from the target and from the reference separately. However,
we encounter the second challenge during the process of tracking the target and reference, i.e., the re�ections
become unstable when the device is moving. The desired target and reference re�ections sometimes become
weak, while the undesired multipath from other uninterested objects become strong. This phenomenon will
cause the range information of the target and reference wrongly estimated.

To address the second challenge, we leverage the spatial continuity of movement to mitigate the e�ect of
unstable re�ections. Even though the noise and undesired multipath sometimes can be strong to interfere with
the target and reference tracking, we observe that they appear randomly and can be eliminated as outliers. In
contrast, the target and reference re�ection can form two continuous trajectories owing to spatial continuity.

The third challenge we encounter is the insu�cient phase sampling rate2 under device motion. Speci�cally,
we can obtain one phase sample from each single chirp. Since the phase measurement is wrapped within the
interval »� c• c¼, we need to unwrap the phase measurement to recover the true distance change between the

1We term the static object as the �reference� hereafter.
2The phase sampling rate mentioned here is di�erent from the 48:�I audio signal sampling rate in our system. The phase sampling rate is
the number of transmitted chirps per second.
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device and target. When the device moves slowly, the phase measurement can be correctly unwrapped. However,
if the device moves fast, the values of two consecutive phase measurements will be more thanc , making phase
measurements wrongly unwrapped. Intuitively, we can increase the phase sampling rate by shortening the chirp
duration to avoid this issue. However, a short chirp will severely decrease the sensing range, resulting in poor
sensing performance.

To address the third challenge, we propose a new chirp transmitting scheme to deliberately make adjacent
chirps overlap to increase the phase sampling rate. Unlike traditional chirp sending schemes in which one chirp
will only be sent after the previous chirp is completely sent out, we start transmitting the second chirp before the
transmission of the �rst chirp is completed. With this novel design, the phase sampling rate can be increased,
breaking the device speed constraint on sensing under device motion.

In this paper, we propose a system namedSonicBotto explore the capability of acoustic sensing under device
motion. We implementSonicBoton a development platform for extensive experiments. We demonstrate the
feasibility and reliability of the proposed system using two representative sensing applications, coarse-grained
gesture recognition and �ne-grained respiration monitoring. Our contributions are summarized as follows:

� To the best of our knowledge, this is the �rst time that device motion is considered in acoustic sensing. We
believe sensing under device motion is a critical step towards real-world adoption of acoustic sensing.

� We propose a device motion cancellation scheme to extract the target movement in the presence of device
motion. We propose a chirp transmitting scheme that can increase the phase sampling rate to address the
phase unwrapping issue caused by device motion.

� We implement our system on a pair of commodity speaker and microphone, and conduct comprehensive
experiments to evaluate its performance. We showcase our system with two representative applications.
Experiment results demonstrate the e�ectiveness of the proposed solution in real-world settings.

2 RELATED WORK
As an integration of acoustic sensing with healthcare robots,SonicBotis closely related to contact-free acoustic
sensing and sensing on healthcare robots. In this section, we discuss the literature most related to our study.

2.1 Acoustic Sensing
In the last decade, acoustic sensing has enabled plentiful sensing applications, which can be divided into two
categories in terms of sensing granularity: coarse-grained and �ne-grained activity sensing.

2.1.1 Coarse-grained Activity Sensing.Coarse-grained activity sensing aims at sensing large movements such as
meter-level human walking [16,17] and decimeter-level hand gesture [19,25,38,58]. Acoustic sensing systems can
capture target movement information by continuously tracking the relative distance between target and sensing
device. For example, EchoSpot [16] achieves human tracking using a single pair of speaker and microphone in an
indoor environment. Due to the large re�ection area of human body, the re�ected signals are strong enough to be
captured within a room. However, room-scale hand tracking is a non-trivial task since hand is much smaller than
human body, resulting in a much weaker re�ection [14, 58]. Therefore, RTrack [25] combines signal processing
techniques with recurrent neural network (RNN) to push hand tracking range to 4.5< .

2.1.2 Fine-grained Activity Sensing.Di�erent from sensing large movements, �ne-grained activity sensing focuses
on sensing subtle displacement such as respiration [43, 55, 56] and movement of small body parts such as �nger
tapping [28, 46, 57, 60] and eye blink [21]. Even though subtle movement cannot cause apparent distance change
as that caused by large movement, it can still induce signal variations that delicate signal processing schemes can
resolve. For example, a 5<< chest displacement during breathing induces an obvious signal phase variation,
which is signi�cant enough to be detected [43, 55]. However, existing acoustic sensing systems can only achieve

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 128. Publication date: September 2022.



Enabling Contact-free Acoustic Sensing under Device Motion̂ 128:5

�ne-grained activity sensing within a limited range. For example, C-FMCW [56] achieves a maximum respiration
sensing range of 2< . Compared with coarse-grained activity, the sensing range of �ne-grained activity is much
shorter since the signal variation induced by subtle displacement could be easily buried in noise.

To push the range boundary of acoustic sensing, we propose to deploy the sensing device on a moving robot to
enable applications that require large coverage and continuous sensing. One typical application is the healthcare
robot, which continuously senses the target's physical status.

2.2 Sensing on Healthcare Robots
As the aging problem becomes more severe worldwide, there is an increasing demand for healthcare robots to
help relieve the heavy burden of elderly care. Besides, the current COVID-19 pandemic has also stimulated a great
need for contact-free nursing. We envision contact-free sensing on healthcare robots to become a general trend.
Here, we introduce two functions of healthcare robots, i.e., physical rehabilitation and respiration monitoring,
which are closely related to the coarse-grained and �ne-grained activity sensing mentioned above, respectively.

2.2.1 Physical Rehabilitation.Many healthcare robots provide engaging physical rehabilitation of upper-limb
function for patients with Parkinson's disease, Alzheimer's disease, or stroke [1, 40, 41, 49]. They aim at improving
the patients' upper-limb performance by asking them to perform gestures to interact with the healthcare robot [4].
For example, iRebot [41] is a gesture-controlled robot that can provide physical rehabilitation with entertainment.
However, it requires patients to wear customized sensors on their wrists, causing an extra burden on patients. To
avoid adding wearable sensors on patients, Rijantoet al.[35] employ computer vision for rehabilitation on a
robot, but camera-based methods cannot work well in poor lighting conditions and also raise privacy concerns.

2.2.2 Respiration Monitoring.Continuous vital sign sensing such as respiration monitoring is a critical function
on healthcare robots for patients with respiratory diseases and the elderly who need 24/7 surveillance, especially
under the COVID-19 pandemic [12, 27]. Most healthcare robots still employ traditional contact-based sensors
such as oximeter to measure the respiration rate [12, 13], which is cumbersome and will result in a high
risk of cross-infection. Dedicated sensors such as remote photoplethysmography (rPPG) [42, 52] and infrared
thermometer [27, 32] are employed for contact-free respiration monitoring. Yet, these methods are sensitive to
motion and cannot achieve continuous sensing under device motion.

3 PRELIMINARY

3.1 Chirp Signal Primer
Chirp signal is a continuous wave whose frequency increases linearly with time as50 ¸ �

) C, where50, � , and) are
the initial frequency, bandwidth, and chirp duration, respectively. The transmitted chirp can be represented as

G¹Cº = cos
�
2c

�
50C¸

�
2)

C2� �
” (1)

Considering a simple scenario where there only exists one re�ector in the environment. The transmitted chirp
is re�ected from the re�ector, and then received at the microphone. As shown in Fig. 2a, the received chirp is a
delayed version of the transmitted chirp, which can be represented as

~¹Cº = Ucos
�
2c

�
50¹C� gº ¸

�
2)

¹C� gº2� �
• (2)

whereU is the signal attenuation, andg is the time-of-�ight (ToF) of the signal in the air.g can be used to
calculate the distance of the re�ector with respect to the speaker-microphone pair as3 = g+B

2 , where+B is
the speed of the sound. To obtain the distance information of the re�ector, we obtain the mixed signal by
multiplying the received chirp with the transmitted chirp. After applying the product-to-sum formulacos� cos� =
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(a) The transmi�ed chirp and the received chirps. (b) The FFT result of the mixed signal.

Fig. 2. The transmi�ed chirp (a) travels through multiple paths with di�erent delays and (b) falls into di�erent range bins.

¹cos¹� � � º ¸ cos¹� ¸ � ºº•2 and �ltering out the high frequency componentcos¹� ¸ � º, the mixed signal can be
represented as

< ¹Cº =
1
2

Ucos
�
2c

� �
)

gÇ 50g �
�
2)

g2� �
” (3)

We further simplify the mixed signal as

< ¹Cº =
1
2

Ucos¹2c 5 Ç i º• (4)

where 5 = �
) g is the beat frequency, andi = 2c

�
50g � �

2) g2�
� 2c 50g is the initial phase. In a typical setting,

50 ¡¡ �
2) g, so we can omit the quadratic term. Taking multipath into consideration, the mixed signal can be

written as a superposition of re�ections from# paths

< ¹Cº =
#Õ

8=1

1
2

U8cos¹2c 58C¸ i 8º• (5)

whereU8, 58, andi 8 denote the signal attenuation, beat frequency, and initial phase for the8-th path, respectively.
The beat frequency can present us a coarse-grained estimate of the absolute distance (i.e., the ranging information)
of the re�ector with respect to the device. Speci�cally, the signals re�ected from re�ectors at di�erent distances
have di�erent ToFs, leading to di�erent beat frequencies. Therefore, we can calculate the target's coarse-grained
distance3 based on the beat frequency as

3 =
+B5)

2�
” (6)

The beat frequency can be obtained by performing Fast Fourier Transform (FFT) on the mixed signals. Then,
multiple signals re�ected from re�ectors at di�erent distances can be separated into di�erent range bins as shown
in Fig. 2b. The size of the range bin is relevant to the range resolution, which is determined by the frequency
bandwidth� of the chirp and can be calculated as+B

2� . That means if two re�ectors are located+B
2� apart with

respect to the device, the two re�ections will fall into two di�erent range bins. Without loss of generality, we
consider a bandwidth of 4:�I , which yields a range resolution of 4.252<. If the moving distance of the re�ector
exceeds the size of the range bin, the re�ector moves from one range bin to another and thus we can calculate
the distance change. In contrast, if the moving distance of the re�ector is less than one range bin, we need to
refer to the phase change to track its movement.

The initial phase contains �ne-grained information to track the displacement� 3 of the re�ector with respect
to the device. The displacement� 3 from distance30 to 31 can be represented as

� 3 = 31 � 30 =
g1+B

2
�

g0+B

2
=

+B

2
¹g1 � g0º” (7)
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(a) The range profile under the stationary scenario. (b) The range profile under the device motion scenario.

(c) The phase change under the stationary scenario. (d) The phase change under the device motion scenario.

Fig. 3. In the stationary scenario, (a) hand gesture can be recognized based on the range information of the hand, and (c)
respiration pa�ern can be obtained from the phase information extracted from the the range bin of the human body. While
in the device motion scenario, (b) the range bin of the human hand keeps changing, and (d) the phase variation induced by
respiration is overwhelmed by device motion.

Since the initial phase mentioned above is represented asi � 2c 50g, we can obtain the relationship between the
displacement� 3 and the phase variation� i as

� 3 =
+B

2
¹

i 1

2c 50
�

i 0

2c 50
º =

+B� i
4c 50

” (8)

To summarize, the range information can be adopted for coarse-grained motion sensing. In contrast, the phase
information can imply the subtle displacement that happens within a range bin, which can be employed for
�ne-grained activity sensing.

3.2 Sensing with Stationary Device
In this subsection, we introduce how contact-free acoustic sensing systems work with stationary devices.

3.2.1 Coarse-grained Activity.Since the coarse-grained activity such as hand gesture usually involves a movement
scale larger than the size of a range bin, it can be sensed using the absolute distance information. Speci�cally, the
target re�ection can be observed on the range pro�le with high energy as shown in Fig. 3a. Suppose that a human
target sitting in front of the device performs a �push� gesture. We can observe that the hand gets closer from the
range pro�le shown in Fig. 3a. Therefore, we can achieve gesture recognition based on the range information.

3.2.2 Fine-grained Activity.Despite the range information can imply the target movement, it is not enough
for �ne-grained activity sensing since the displacement of �ne-grained activity is smaller than one range bin.
In this case, we need to employ the phase information for subtle movement sensing. We �rst detect the range
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bin in which the target is located and then zoom into it to extract the phase variation. We employ respiration
sensing as an example to illustrate �ne-grained activity sensing. When sensing with a stationary device, since the
distance between the device and the target is relatively �xed and the 5<< chest movement is within a range bin
of 4.252<, the range bin of the human body will not change during the sensing process, which can be observed
in Fig. 3a. Therefore, we can take a one-time e�ort to identify the target re�ection and then zoom into the target
range bin to obtain the phase change caused by chest movement. As Eq. 8 depicts, the �ne-grained movement
causes the initial phase of the mixed signals to vary. The 5<< chest movement causes the re�ection path length
change and induces around a phase variation of 3.69A03. By measuring the phase variation, we can obtain the
respiration pattern of the target as shown in Fig. 3c.

3.3 Sensing under Device Motion
Acoustic sensing under device motion is dramatically di�erent from sensing with a stationary device. We introduce
the impact of device motion on coarse-grained and �ne-grained activity sensing, respectively.

3.3.1 Coarse-grained Activity.For coarse-grained gesture recognition, we can see from Fig. 3b that the push
gesture is distorted by device motion. The reason is that besides the target movement, device motion is also
contained in target re�ection. Thus, the push gesture cannot be accurately recognized under device motion.

3.3.2 Fine-grained Activity.In the device motion scenario, the respiration pattern can no longer be extracted by
the approach used in the stationary scenario. Speci�cally, the device motion has the following two main e�ects
on respiration sensing:

(1) The range bin of the target changes. Under device motion, the distance between the target and the device
varies signi�cantly, which is much larger than the size of one range bin (i.e., 4.252<), thus the range bin
where the target is located continuously changes from one to another as shown in Fig. 3b. Consequently,
the chest movement occurs in di�erent range bins as the device moves, which requires us to continuously
detect the target's range bin.

(2) The target movement is overwhelmed by device motion. Even though we can accurately identify the
target's range bin, the phase variation extracted from the target re�ection contains the chest movement and
the device motion information. Both chest movement and device motion contribute to the re�ection path
length change, causing phase variations to be superimposed. We show the phase variation extracted from
the target's range bin in Fig. 3d. We can see that the phase variation no longer indicates the respiration
pattern under device motion.

In summary, device motion degrades sensing performance and even causes failure of existing sensing systems.
We therefore proposeSonicBotto address the issue of device motion in acoustic sensing.

4 DEVICE MOTION CANCELLATION
Our basic idea is to employ a static object in the environment as a reference to extract the signal variation caused
by the device motion, which can be removed to obtain clean target movement information. This section introduces
the principle of the proposed solution and conducts experiments to evaluate its feasibility and e�ectiveness.

4.1 Principle
Suppose there exist two re�ectors in the environment, which are the target and the reference. We denote the
target re�ection and reference re�ection as< )0A and< '45 , respectively

< )0A ¹Cº =
1
2

U)0A cos¹2c 5)0AC¸ i )0Aº• (9)
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(a) The range profile of sensing coarse-grained movement.(b) The range profile of sensing fine-grained movement.

(c) The recovered target movement using range information.(d) The recovered target movement using phase information.

Fig. 4. An illustration of applying the proposed motion cancellation scheme for acoustic sensing under device motion.

< '45 ¹Cº =
1
2

U'45 cos¹2c 5'45 C¸ i '45 º• (10)

where5)0A , 5'45 contain the range information, andi )0A , i '45 are the phase information of the target and the
reference, respectively.

Since the reference is static, the variation of range and phase information obtained from the reference re�ection
is purely induced by device motion. Therefore, we can infer the device motion information from reference
re�ection. On the other hand, the target re�ection contains both target movement information and device motion
information. So we can recover clean target-induced signal variation by subtracting the signal variation in the
reference re�ection from that in the target re�ection. Based on Eq. 6, the coarse-grained target moving distance
� 3�>0AB4

)0A can be recovered from the range information as

� 3�>0AB4
)0A =

+B)
�

¹� 5)0A � � 5'45 º” (11)

If the target movement is within a range bin, we need to further involve the phase information for �ne-grained
displacement measurement� 3�8=4

)0A , which can be calculated based on Eq. 8 as

� 3�8=4
)0A =

4c 50

+B
¹� i )0A � � i '45 º” (12)

Through the above subtraction operation, the impact of device motion can be eliminated and clean target
movement information can be recovered.
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(a) Undesired multipath and weak re-
flected signals will result in wrongly-
estimated range information.

(b) We select five peaks with high re-
flected energy as candidates in each
time window.

(c) The target and the reference can be
successfully detected by our proposed
solution.

Fig. 5. Illustration for (a) wrongly-estimated range information, (b) selected candidate peaks, and (c) the clustering result of
target and reference detection.

4.2 Feasibility Evaluation
We conduct experiments to evaluate the e�ectiveness of the device motion cancellation scheme. The device
is placed on a linear guide slide and moves back and forth for 202< at a constant speed of 52<•B. We use a
cardboard with a size of8 � 152<2 as target and attach it to a cozmo robot to control its movement, and the
target is placed 0.6< away from the device. We adopt a19� 192<2 cardboard box as the reference and put it
1< away from device. To evaluate coarse-grained activity sensing, we let the cozmo robot move forward and
backward for 202< to simulate the �push� and �pull� gesture, respectively. To evaluate the �ne-grained activity
sensing, we let the cozmo robot move back and forth for 5<< to simulate the chest movement.

Fig. 4 shows the e�ect of applying the device motion cancellation scheme on coarse-grained and �ne-grained
movement sensing. From Fig. 4a, we can see that the coarse-grained target movement is severely distorted by
the device motion. However, it can be accurately recovered by subtracting the range change of the reference
re�ection from that of the target re�ection as shown in Fig. 4c. For �ne-grained activity sensing as shown in
Fig. 4b, the �ne-grained target movement cannot be recovered from the range information. We can recover the
subtle movement pattern of the target by subtracting the phase change of the reference re�ection from that of
the target re�ection as demonstrated in Fig. 4d.

In brief, utilizing a static object in the environment as a reference to cancel out device motion is an e�ective
scheme for recovering both coarse-grained and �ne-grained target movement information.

5 ESTIMATING RANGE INFORMATION OF THE TARGET AND THE REFERENCE
To apply the device motion cancellation scheme proposed in Sec. 4, accurate range information of the target and
the reference is critical. This section introduces the problem encountered during the process of estimating the
range information and addresses the problem by applying spatial continuity to constrain target movements.

5.1 Problem Description
We employ range pro�les to localize and track re�ectors in the environment. The range pro�le shows a high-
energy trajectory which implies the location of the re�ector at di�erent timestamps as shown in Fig. 5a. However,
due to rich multipath in indoor environment, we can observe several other peaks on the range pro�le, which
means that there exist other undesired multipath re�ections besides the target and reference we are interested.
To eliminate the undesired multipath interference including the direct path and re�ections from other static
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objects, prior studies [14, 25] adopt background subtraction to make the interested re�ection stand out on the
range pro�le. Although background subtraction works e�ectively under the stationary scenario, it does not work
under device motion due to the following reasons.

First, in a multipath-rich environment, the multipath conditions at two locations might be dramatically di�erent.
During the process of device motion, the multipath condition keeps varying and some undesired multipath
would appear randomly on the range pro�le. Fig. 5a shows a range pro�le under device motion. The device
moves forward and backward for 202<. The human target sits in front of the device at 1< and there is a wall
behind the human target at 2< with respect to the device. From the �gure, we can observe that the undesired
multipaths pinpointed by arrows vary over chirps and are strong enough to interfere with target range estimation.
In stationary scenario, the multipath re�ected from static objects are relatively stable over chirps, and thus, can
be removed by a subtraction operation between range pro�les of two adjacent chirps. However, this background
subtraction method does not work well in the device motion scenario due to varying multipath. Second, device
motion causes the signal re�ected by the target or the reference at certain locations to be very weak. As we can
see from Fig. 5a, several dark gaps marked in the dashed boxes make the target's trajectory discontinuous on the
range pro�le. Both of these two reasons cause wrongly estimated target/reference range which further impacts
device motion cancellation.

5.2 Spatial Continuity of Movement
We propose a method to eliminate the wrongly-estimated target/reference range information caused by device
motion. The proposed method is based on the fact that the movement of an object is continuous in space. Thus,
we can rule out the undesired multipath which randomly appears on the range pro�le and remedy those gaps
where the re�ections from the target or the reference are weak through the following steps.

First, we assume that the range bin of the target and the reference do not change within a short time window (e.g.,
0.2B). We can remove the random noise and partial undesired multipath by summing up the range pro�les from
multiple chirp measurements within this time window.

Second, we pick a certain number of peaks with high re�ection signal strength as candidates from the summed
range pro�le of each time window as shown in Fig. 5b since they indicate the possible locations of the target and
the reference. We empirically set the number of candidate peaks as 5 [11]. There are two factors we take into
consideration for selecting candidates. (i) The direct path has much stronger power than the re�ection paths,
so the candidate searching starts from the distance of 0.3< to eliminate in�uence of the direct path. (ii) One
re�ector may cause two to three adjacent range bins to have high energy on the range pro�le, so we regard them
as one candidate.

Third, there are still some undesired multipath re�ections that have intense re�ection energy. Therefore, we
apply the DBSCAN algorithm to the selected candidates to rule out the residual undesired multipath. According
to spatial continuity, the range points of the target and the reference are recognized as two classes while the
random points caused by undesired multipath are regarded as outliers. Thus, we can obtain two clear trajectories
corresponding to the target and the reference, respectively, as shown in Fig. 5c. Last but not least, if there are still
some range information missing in the trajectories due to the weak re�ections, we then remedy those missing
range information by predicting them according to the anterior and posterior range information.

To sum up, the spatial continuity helps us eliminate interference from the undesired multipath re�ections to
achieve robust identi�cation of the target and the reference.

6 IMPROVING THE PHASE SAMPLE RATE
So far, accurately estimating the range information of target and reference is enough for coarse-grained activity
sensing such as gesture recognition, whose displacement is in the range of 10 to 302<. Yet, the range information
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(a) The phase change under
the stationary scenario.

(b) The large phase change between two consecutive samples causes wrong phase unwrap-
ping under device motion.

Fig. 6. (a) The phase change induced by respiration between two samples is withinc under the stationary scenario since
the chest movement is only 5<< and its speed is slow. (b) However, the phase change under the device motion scenario is
induced by respiration plus device motion which will cause a significant phase change between two samples, resulting in the
phase being wrongly-unwrapped.

is not enough to sense �ner-grained movements such as respiration because a 5<< displacement of the chest is
much smaller than the size of a range bin, i.e., 4.252<. As a result, we need to further extract the phase information
that contains �ne-grained movement information. However, there exists an insu�cient phase sampling rate
problem in chirp signal design which severely limits the capability of �ne-grained activity sensing under device
motion. This section �rst introduces the insu�cient phase sampling rate problem. Then, we propose an overlapped
chirp transmitting scheme to mitigate the e�ect caused by this problem.

6.1 Problem Description
Phase information is widely adopted for respiration monitoring since it can provide �ne-grained displacement
measurements [43, 55]. We can obtain one phase sample from every single chirp. For example, if the chirp duration
is 0.04B, the acoustic sensing system can transmit 25 chirps per second, which means that we can obtain 25 phase
samples within one second for sensing. When the device is stationary, the target re�ection only contains the
chest movement. According to Eq. 8, a 5<< chest displacement causes a phase change of 3.69A03. In this case,
the phase changes on the I-Q plane as illustrated in Fig. 6a. The phase rotates clockwise when the chest moves
towards the device and counter-clockwise when the chest moves away. By measuring the phase change, we can
recover the respiration pattern.

In contrast, the phase change under device motion is induced by both target and device. The device motion
is much larger than the chest movement and it causes the phase wrapping problem because the phase change
between two consecutive chirps can be more thanc, resulting in the displacement being wrongly estimated as
shown in Fig. 6b.

Speci�cally, in order to avoid the phase wrapping problem, the phase change between two consecutive samples
cannot be more thanc, which corresponds to a displacement of 4.25<< . Hence, to make respiration sensing
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(a) The traditional chirp transmi�ing scheme. (b) The overlapped chirp transmi�ing scheme.

Fig. 7. Di�erent from the traditional chirp transmi�ing scheme (a), our overlapped chirp transmi�ing scheme (b) can increase
the chirp rate without sacrificing sensing range.

Fig. 8. The workflow of the overlapped chirp transmi�ing scheme.

work under a device moving speed of 0.2< •B3, the phase sampling rate should be at least0”2 � 1000<< •B
4”25<< •B = 47�I .

Therefore, the chirp duration should not exceed 0.0213Bto meet the required phase sampling rate. The typical
chirp duration setting for activity sensing is 0.04B[14, 25], which cannot meet the phase sampling rate required
under device motion. If we decrease the chirp duration to 0.0213B, the sensing range would also be decreased. As
a result, we cannot simply shorten the chirp duration to improve the phase sampling rate.

6.2 Overlapped Chirp Transmi�ing Scheme
We propose an overlapped chirp transmitting scheme that deliberately makes the adjacent chirps overlap, which
can increase the phase sampling rate without decreasing the sensing range. Unlike traditional chirp sending
scheme shown in Fig. 7a, in which one chirp will only be sent after the previous chirp is completely sent out, we
start transmitting the second chirp before the transmission of the �rst chirp is completed as shown in Fig. 7b.
Since chirps overlap with each other, we call it overlapped chirp transmitting scheme. Through transmitting
overlapped chirps, we increase the number of transmitted chirps per second, improving the phase sampling rate.

3The safe speed of the healthcare robot for human-robot interaction is no more than 0.2< •Bwithin a distance of 2< [2].
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(a) Traditional scheme with 0.04B
chirps.

(b) Traditional scheme with 0.02B
chirps.

(c) Overlapped scheme with 0.04B
chirps.

Fig. 9. Range profiles when di�erent chirp transmi�ing schemes are adopted.

The work�ow of overlapped chirp transmitting scheme is shown in Fig. 8. Speci�cally, the overlapped chirps
are transmitted from the speaker, re�ected by the target, and then received by the microphone. We mix the
received overlapped chirps one by one with a single transmitted chirp (i.e., the mixing template as shown in
Fig. 8c) to obtain the mixed signals. Note that the overlap would create an aliasing peak from the next chirp,
which is 3.43< further away with respect to the true peak for a gap of 0.02Bbetween overlapped chirps as
shown in Fig. 8d. As the targeted sensing range in this work is 3< , the aliasing peak can be �ltered out since it is
out of the sensing range. After getting the mixed signals of target re�ection, we can further obtain the phase
information for each chirp.

The phase sampling rate can be calculated by the time shift between the start timestamps of two consecutive
chirps. For example, if we employ overlapped 0.04Bchirps with a time shift of 0.02B, then the phase sampling
rate is 1

0”02B = 50�I , which is doubled compared with 1
0”04B = 25�I using traditional 0.04Bchirps. Although

repeating a 0.02Bchirp twice can achieve the same phase sampling rate as overlapped 0.04Bchirps, the later
achieves a better sensing performance. This is because the re�ected signal strength is related to (i) the SNR of
the received signals and (ii) the number of mixed samples [15, 25, 53], i.e., the size of the grey areas shown in
Fig. 9. Another way to increase the SNR is to employ the cross correlation method [56]. However, compared with
the proposed scheme, the sensing granularity of the cross correlation method is coarser, and its computational
complexity is relatively higher.

We conduct experiments4 to show the performance di�erence for three schemes, i.e., (a) traditional scheme
with 0.04Bchirps, (b) traditional scheme with 0.02Bchirps, and (c) overlapped 0.04Bchirps. We can see from Fig. 9
that the re�ections of using 0.04Bchirps (i.e., Fig. 9a and Fig. 9c) are stronger than that of using 0.02B(Fig. 9b).
Scheme (c) achieves similar signal strength as scheme (a). On the other hand, scheme (c) obtains more phase
samples within the same time window and therefore can track a target with a larger speed.

Although we can further increase the phase sampling rate by shortening the time shift, i.e., increasing
the overlap between two sending chirps, there exists a boundary that limits the improvement of the phase
sampling rate. The reason is two-fold. First, the upper bound of the phase sampling rate depends on the required

4We put a cozmo robot 2< away from the sensing device. The robot moves back and forth for 5<< and the sensing device is stationary.
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